Nanik Suciati
Department of Informatics, Institut Teknologi Sepuluh Nopember

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ALPHABET SIGN LANGUAGE RECOGNITION USING LEAP MOTION TECHNOLOGY AND RULE BASED BACKPROPAGATION-GENETIC ALGORITHM NEURAL NETWORK (RBBPGANN) Wijayanti Nurul Khotimah; Risal Andika Saputra; Nanik Suciati; Ridho Rahman Hariadi
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 15, No. 1, Januari 2017
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v15i1.a639

Abstract

Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%). Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language) in SIBI (Sign System of Indonesian Language) which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN), was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN). Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm.
UAV LAND COVER CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK FEATURE MAP WITH A COMBINATION OF MACHINE LEARNING Erika Maulidiya; Chastine Fatichah; Nanik Suciati; Fajar Baskoro
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 22, No. 1, January 2024
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v22i1.a1214

Abstract

In geographic analysis, land cover plays an important role in everything from environmental analysis to sustainable planning methods and physical geography studies. The Indonesian National Standard (SNI 7645:2014) classifies vegetation analysis based on density. There are four categories of vegetation density index: non-vegetation, bare, medium, and high. Technically, vegetation data can be obtained through remote sensing. Satellite and UAV data are two types of data used in remote sensing to collect information. This research will analyze land cover based on vegetation density information that can be collected through remote sensing. Based on vegetation density information from remote sensing, the information can help in land processing, Land Cover Classification is carried out based on vegetation density. Convolutional neural networks (CNN) have been trained extensively to apply their properties to land cover classification. This research will evaluate features extracted from Convolutional Neural Networks (ResNet 50, Inception-V3, DenseNet 121) which have previously been trained and continued with Decision Tree algorithms, Random Forest, Support Vector Machine and eXtreme Gradient Boosting to perform classification. From the comparison results of classification tests between machine learning methods, Support Vector Machine is superior to other machine learning methods. This is proven by the accuracy results obtained at 85% with feature extraction using ResNet-50 where the processing time is 8 minutes. Followed by the second-best model, namely ResNet-50 with XGBoost which obtained accuracy results of 82% with a processing time of 55 minutes. Meanwhile, the use of feature extraction using the DenseNet-121 method was obtained using a combination of the Support Vector Machine method and the XGBoost method with the accuracy obtained being 81%.