Didik Dwi Prasetya
Univerrsitas Negeri Malang, Malang, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Machine Learning for Open-ended Concept Map Proposition Assessment: Impact of Length on Accuracy Reo Wicaksono; Didik Dwi Prasetya; Ilham Ari Elbaith Zaeni; Nadindra Dwi Ariyanta; Tsukasa Hirashima
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 25 No. 1 (2025)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v25i1.5044

Abstract

Open-ended concept maps allow learners to freely connect concepts, enriching understanding by linking new and prior knowledge. However, manually assessing proposition quality is time-consuming and subjective. This study proposes an automatic classification model for proposition quality assessment using term frequency–inverse document frequency (TF-IDF), a text representation method based on word frequency, and several machine learning algorithms. Two datasets were used are Relational Database with an average 5 words per proposition and Cybersecurity Authentication with an average 10 words per proposition. Comparative experiments with Support Vector Machine (SVM), a supervised classification algorithm, K-Nearest Neighbor, Random Forest, and Long Short-Term Memory (LSTM), a recurrent neural network for sequence data, revealed that SVM with RBF kernel achieved the highest performance on shorter propositions 87% accuracy, Cohen’s Kappa 0.76, while LSTM showed greater strength in handling longer propositions 85% accuracy, Cohen’s Kappa 0.69. These findings suggest that proposition length influences model effectiveness. The proposed approach can reduce the burden of manual assessment, increase the objectivity of evaluation, and support more efficient implementation of concept maps in education.