Nadindra Dwi Ariyanta
Universitas Negeri Malang, Malang, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Assessing the Semantic Alignment in Multilingual Student-Teacher Concept Maps Using mBERT Nadindra Dwi Ariyanta; Didik Dwi Prasetya; Ilham Ari Elbaith Zaeni; Tsukasa Hirashima; Reo Wicaksono
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 25 No. 1 (2025)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v25i1.5046

Abstract

This study examines the effectiveness of mBERT (Multilingual Bidirectional Encoder Representations from Transformers) in assessing semantic alignment between student and teacher concept maps in multilingual educational contexts, comparing its performance with TF-IDF. Using datasets in both Indonesian and English, the study demonstrates that mBERT outperforms TF-IDF in capturing complexsemantic relationships, achieving 96% accuracy, 96% precision, 100% recall, and a 98% F1 score in the Indonesian dataset. In contrast, TF-IDF achieved higher precision (73%) and accuracy (79%) in the English dataset, where mBERT recorded 54% accuracy, 47% precision, but 90% recall. Semantic alignment was measured using cosine similarity to calculate the cosine of the angle between vectorsrepresenting textual embeddings generated by both models. This method facilitates cross-linguistic semantic comparison, overcoming challenges related to word frequency and syntactic variations. While mBERT’s computational demands and the study’s limited linguistic scope suggest room for improvement, the findings highlight the potential for hybrid models and emphasize the transformative impact of AI-driven tools, such as mBERT, in fostering inclusive and effective multilingual education.