The advancement of digital technology has made users increasingly reliant on online services, with user reviews serving as an essential resource for evaluating the quality of service provided by companies such as FirstMedia. However, these valuable data have not undergone comprehensive analysis to assess users’ emotional responses. This study aims to classify FirstMedia customers’ emotions into four categories (joy, sadness, anger, and neutral) and to evaluate the Support Vector Machine (SVM) method using four different kernel functions. Most existing studies primarily focus on polarity-based sentiment analysis and do not explicitly examine multi-emotion classification or kernel comparison in machine learning models. A total of 4,001 reviews were collected through web scraping from the Google Play Store and the X app and processed through several preprocessing steps. Emotion classification was conducted using the NRC Indonesian Emotion Lexicon, while word significance was determined using TF-IDF weighting. After preprocessing, 3,069 labeled reviews were retained and distributed as 1,065 neutral, 748 anger, 692 joy, and 564 sadness reviews, which were used for emotion classification. Model performance was evaluated using a hold-out validation scheme with an 80:20 train-test split and assessed through a confusion matrix. To address class imbalance, undersampling was applied, resulting in a balanced dataset for model training. The evaluation results show that the Linear kernel achieved the highest performance, with an accuracy of 82.63%, precision of 82.86%, recall of 82.63%, and an F1-score of 82.60%, outperforming the Gaussian, Polynomial, and Sigmoid kernels. This study demonstrates that multi-emotion sentiment analysis provides a more comprehensive understanding of user perceptions beyond conventional sentiment polarity, thereby supporting more informed evaluations of digital service quality.