Zaenal Abidin, Budi Jejen
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi Pengujian Otomatis End-To-End Menggunakan Cypress dengan Metode Black Box Testing untuk Meningkatkan Kualitas Aplikasi EdTech XYZ Berbasis Website Rina Septiani; Zaenal Abidin, Budi Jejen; Firizkiansah, Angge
JIKOMTI : Jurnal Ilmiah Ilmu Komputer dan Teknologi Informasi Vol. 2 No. 2 (2025): JIKOMTI: DESEMBER 2025
Publisher : Universitas Sains Indonesia Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Software quality is an important aspect of development because it affects user satisfaction. Therefore, testing is necessary to ensure that the software runs according to specifications and minimizes errors. However, manual testing tends to be time-consuming, resource-intensive, and prone to human error. This study focuses on improving software quality through the implementation of end-to-end automated testing using Cypress with the black box testing method and following the Software Testing Life Cycle (STLC) stages. The test results show that all test cases were successfully executed with a pass status after improvements were made to the program code, which means that the application is functioning according to specifications. Thus, automated testing has proven to be effective and efficient in improving application quality. Further research is recommended to integrate Cypress with the CI/CD pipeline to support continuous testing automation.
Multi-Horizon Prediction Of Broiler Mortality With Decision Tree And SVM: A Case Study In Small-To-Medium Farms In Sukabumi Zaenal Abidin, Budi Jejen; Wijaya, Bambang Somantri; Hayatus Sahla, Ghaida Sandie
Jurnal Tekno Insentif Vol 19 No 2 (2025): Jurnal Tekno Insentif
Publisher : Lembaga Layanan Pendidikan Tinggi Wilayah IV

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36787/jti.v19i2.2087

Abstract

Abstrak Penelitian ini mengembangkan model machine learning untuk memprediksi mortalitas harian (jumlah kematian) ayam broiler 1–7 hari ke depan secara multi-horizon (H+1–H+7) menggunakan data 12 kandang di Sukabumi selama lima siklus produksi (Juli 2024–Juli 2025). Data dipraproses melalui imputasi nilai hilang (Random Forest), penanganan outlier (IQR dan winsorizing), normalisasi Z-score, serta seleksi fitur (Pearson dan ReliefF). Support Vector Regression (SVR) dan Decision Tree Regression (DTR) dibandingkan dengan hasil menunjukkan SVR unggul untuk prediksi jangka pendek (H+1–H+2; R² = 0,842–0,760), tetapi performanya menurun pada horizon yang lebih panjang. Sebaliknya, DTR lebih stabil pada horizon menengah–panjang (H+5–H+7; R² ≈ 0,683–0,696). Faktor dominan yang berkaitan dengan mortalitas adalah umur dan bobot rata-rata, serta kondisi kandang seperti ventilasi/kecepatan angin, kepadatan tebar, NH₃, dan suhu. Evaluasi dilakukan dengan repeated holdout 70/30 (10 repetisi) dan 5-fold cross-validation pada data latih, mendukung prototipe sebagai peringatan dini. Kata kunci: ayam broiler, decision tree regression, mortalitas, multi-horizon forecasting, support vector regression Abstract This study develops a machine-learning model to predict daily broiler mortality (death counts) 1–7 days ahead using a multi-horizon approach (H+1–H+7), based on data from 12 broiler houses in Sukabumi across five production cycles (July 2024–July 2025). Data were preprocessed using missing-value imputation (Random Forest), outlier handling (IQR and winsorizing), Z-score normalization, and feature selection (Pearson correlation and ReliefF). Support Vector Regression (SVR) and Decision Tree Regression (DTR) were compared. Results show that SVR outperformed DTR for short-term prediction (H+1–H+2; R² = 0.843–0.760), but its performance declined at longer horizons. In contrast, DTR was more stable for medium-to-long horizons (H+5–H+7; R² ≈ 0.683–0.696). Dominant factors associated with mortality included age and average body weight, as well as housing conditions such as ventilation/wind speed, stocking density, NH₃, and temperature. Evaluation used repeated 70/30 holdout (10 repetitions) and 5-fold cross-validation on the training data, supporting a prototype as an early warning tool. Keywords: broiler chicken, decision tree regression, mortality, multi-horizon forecasting, support vector regression