Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimasi K-Means Menggunakan Algoritma Genetika pada Metode User-based Collaborative Filtering Adilla, Axl; Suksmawati, Affi Nizar; Pertiwi, Affifah Mutiara; Pratama, Kharis Suryandaru
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 7 No. 2 (2025): Desember 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v7i2.9382

Abstract

Collaborative filtering merupakan teknik sistem rekomendasi yang menggunakan informasi rating dari beberapa pengguna untuk memprediksi rating suatu item bagi pengguna tertentu. Namun, tidak semua pengguna memberikan rating pada seluruh item. Hal ini menyebabkan ketidakmampuan sistem dalam menentukan nearest neighborhood, sehingga rekomendasi yang dihasilkan menjadi lemah. Penelitian ini mengusulkan penggunaan Algoritma K-Means untuk mengelompokkan neighborhood yang sesuai. Penentuan awal titik pusat klaster pada Algoritma K-Means dioptimalkan menggunakan Algoritma Genetika. Evaluasi dilakukan dengan memvariasikan jumlah klaster optimal pada beberapa metode pengukuran yang digunakan, yaitu Jaccard Similarity Coefficient, Sørensen–Dice Coefficient, dan Hamming Coefficient. Hasil pengujian menggunakan pengukuran Jaccard Similarity Coefficient, Sørensen–Dice Coefficient, dan Hamming Coefficient memperoleh nilai fitness masing-masing sebesar 4.490, 4.979, dan 4.964 untuk jumlah klaster optimal 4 dan 6. Sementara itu, nilai MAPE rata-rata untuk ketiga metode pengukuran kemiripan tersebut sebesar 60%.
An Extreme Gradient Boosting for Blood Disease Classification Using Hematological Parameters: A Comparative Evaluation with Ensemble and Non-Ensemble Models Saputra, Dimas Chaerul Ekty; Oktavia, Vessa Rizky; Futri, Irianna; Pertiwi, Affifah Mutiara
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 11 No. 4 (2025): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v11i4.31659

Abstract

The early detection of hematological disorders remains challenging because many conditions share similar clinical characteristics and show substantial variation in laboratory measurements. Existing machine learning systems often struggle to maintain consistent accuracy in multi-class settings with imbalanced data. The research contribution is a multi-class diagnostic framework that identifies nine hematological disease categories using only routine laboratory parameters, supported by a leakage-free evaluation protocol and a comprehensive comparison across baseline classifiers. The proposed solution uses an extreme gradient boosting model as the primary classifier and evaluates it against support vector machine, random forest, and extra trees. The method includes data cleaning and numerical standardization, and class balancing with the Synthetic Minority Oversampling Technique applied only to the training subset within each fold of ten-fold cross-validation to prevent optimistic bias. Model performance is assessed using accuracy, precision, recall, and F1-score, together with computational efficiency measured through processing time and memory usage. The results show that the extreme gradient boosting model achieves the best overall performance, with an average accuracy of 98.67%, precision of 98.80%, recall of 98.67%, and an F1-score of 98.66%. It also demonstrates efficient memory usage and shorter processing time compared with the other tested methods. The competing models perform adequately but exhibit higher variability and weaker recognition for minority classes. In conclusion, these findings indicate that extreme gradient boosting provides an accurate and efficient approach for hematology-based multi-class disease classification when evaluated under a strict, leakage-free resampling protocol.