Fitria Haya, Rizky
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Detection of Endangered Indonesian Species Across Multiple Taxonomic Classes Using Faster R-CNN Mubarok, Moh. Jabir; Fitria Haya, Rizky; Fitria, Eka; Surya Budi, Brilian
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.4793

Abstract

Indonesia’s rich biodiversity includes many endangered species across various taxonomic groups. This study presents a Faster R-CNN deep learning model to detect ten endangered Indonesian species, covering birds, reptiles, mammals, and fishes. A custom dataset with diverse images was annotated and used to train the model with transfer learning on the Detectron2 framework. Evaluation using COCO metrics yielded an average precision (AP) of 54.93%, with the Komodo Dragon achieving the highest AP (82.57%) and Wallace’s Standardwing the lowest (30.82%). The model excels at detecting larger, distinct species but has difficulty with smaller or camouflaged ones in complex environments. Training results confirm that transfer learning aids performance despite limited data. Analysis of misclassifications suggests the need for additional data modalities or context to improve accuracy. This work highlights the potential of Faster R-CNN for automated endangered species monitoring in Indonesia and recommends dataset expansion, data augmentation, and model refinement to enhance detection, particularly for challenging species. This study contributes to computer vision applications in conservation, particularly within low-resource biodiversity contexts.