This Author published in this journals
All Journal Jurnal Sistem Cerdas
Claim Missing Document
Check
Articles

Found 1 Documents
Search

WebSocket-Based Smart Surveillance Camera for Real-Time Detection of Occupational Health and Safety PPE Non-Compliance in Industrial Areas Sabarto, Rivaldi Azis; Sulistiyowati, Indah; Syahrorini, Syamsudduha; Wisaksono, Arief
Jurnal Sistem Cerdas Vol. 8 No. 3 (2025): In progress (December)
Publisher : APIC

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37396/jsc.v8i3.597

Abstract

In industrial settings, ensuring adherence to Occupational Health and Safety (OHS) Personal Protective Equipment (PPE) regulations continues to be a crucial challenge. The creation of a WebSocket-based smart surveillance camera system for the real-time identification and reduction of PPE infractions is discussed in the paper. The proposed system includes an ESP32-S3 microcontroller accompanied by an OV5640 camera module, acting as an edge-processing embedded platform. The Edge Impulse machine learning framework was used to train image classification and detection models, enabling efficient low-latency inference directly on the device. A websocket enabled web server streams video frames in real time for constant monitoring, with instant display using regular browsers without wasting bandwidth. Experimental results demonstrate that even with limited computational resources, the system is able to perform on-device inference with very high responsiveness and good detection accuracy. This technology provides a scalable and affordable way to enhance OHS compliance monitoring in industry, reduce reliance on manual supervision, and encourage proactive risk mitigation methodologies.