Claim Missing Document
Check
Articles

Found 1 Documents
Search

FORECASTING HARGA DAGING AYAM RAS MENGGUNAKAN ALGORITMA LONG SHORT-TERM MEMORY (LSTM) DAN SARIMA DI JAWA TIMUR Septiajayanti, Dwi; Enggrayni, Freya; Dwi K, Yuana Istiqomah; Hardiyanto, Eko
Djtechno: Jurnal Teknologi Informasi Vol 6, No 3 (2025): Desember
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/djtechno.v6i3.7877

Abstract

Penelitian ini bertujuan untuk memprediksi harga daging ayam ras di Provinsi Jawa Timur sebagai upaya mendukung ketahanan pangan dan perumusan kebijakan yang responsif terhadap kebutuhan masyarakat. Data historis harga harian daging ayam ras periode Januari 2022 hingga Juli 2025 dikumpulkan melalui web scraping dari situs Siskaperbapo. Tahapan penelitian meliputi pengumpulan data, pembersihan dan normalisasi menggunakan Z-Score, analisis eksploratif, pemodelan menggunakan metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dan Long Short-Term Memory (LSTM), evaluasi model dengan metrik Root Mean Squared Error (RMSE) dan Mean Absolute Percentage Error (MAPE), serta implementasi forecasting. Hasil penelitian menunjukkan bahwa model SARIMA(0,0,2)(0,1,1,12) menghasilkan nilai RMSE sebesar 1.521 dan MAPE 38,6%, sedangkan model LSTM memberikan performa lebih baik dengan RMSE 0.002 dan MAPE 20,31%. LSTM mampu menangkap pola data dengan baik dan lebih akurat dibanding SARIMA, meskipun terdapat deviasi pada periode penurunan harga yang tajam. LSTM direkomendasikan sebagai metode peramalan harga daging ayam ras di Jawa Timur karena mampu memberikan hasil prediksi yang lebih presisi. Penelitian selanjutnya dapat mengembangkan pendekatan hibrida untuk meningkatkan akurasi peramalan jangka panjang.