Claim Missing Document
Check
Articles

Found 4 Documents
Search

ANALISIS PENGARUH KETIMPANGAN GENDER TERHADAP PERTUMBUHAN EKONOMI PROVINSI SULAWESI TENGGARA TAHUN 2010-2020 Yeni, Yeni; Setiawati, Ririt Iriani Sri; Wahed, Mohammad; Hardiyanto, Eko
Journal of Economic, Business and Engineering (JEBE) Vol 6 No 2 (2025): April
Publisher : Fakultas Teknik dan Ilmu Komputer (FASTIKOM) Universitas Sains Al Qur'an

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32500/jebe.v6i2.7210

Abstract

Ketimpangan gender telah menjadi isu yang mendapat perhatian global. Dampaknya meluas ke berbagai aspek seperti sosial, pendidikan, politik dan ekonomi. Tujuan penelitian ini adalah untuk mengukur ketidaksetaraan gender dan mengevaluasi dampak ketidaksetaraan gender terhadap pertumbuhan ekonomi di provinsi Sulawesi Tenggara. Jenis data yang digunakan dalam penelitian ini adalah data sekunder. Data sekunder yang penulis gunakan dalam penelitian ini adalah data panel dari tahun 2010 hingga 2020. Metode penelitian ini bersifat deskriptif dengan pendekatan kuantitatif. Model estimasi menggunakan regresi linier berganda. Dari penelitian yang telah dilakukan diketahui bahwa variabel independen dalam penelitian ini, yaitu rata-rata lama sekolah laki-laki, tingkat partisipasi angkatan kerja laki-laki, dan tingkat pengangguran terbuka laki-laki secara serempak berpengaruh terhadap PDRB di Sulawesi Tenggara pada tahun 2010-2020. Sedangkan angka harapan hidup perempuan, rata-rata lama sekolah perempuan, tingkat partisipasi angkatan kerja perempuan, dan tingkat pengangguran terbuka perempuan secara serempak tidak berpengaruh terhadap PDRB di Sulawesi Tenggara pada tahun 2010-2020.
Analisis Kelayakan Usaha Tani Komoditi Pisang Cavendish Di Desa Kuniran Kecamatan Purwosari Kabupaten Bojonegoro Hardiyanto, Eko; Surjono, Surjono; Prayitno, Gunawan
Jurnal Ekonomi Pertanian dan Agribisnis Vol. 8 No. 3 (2024)
Publisher : Department of Agricultural Social Economics, Faculty of Agriculture, Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jepa.2024.008.03.28

Abstract

The Cavendish banana s one of the commonly widely cultivated and commercial banana commodities in Indonesia and more than 40% of the fruit is produced worldwide. Reviewed from a market perspective, this commodity is so potential that it offers an opportunity to increase its productivity in meeting the needs of the market. The research was conducted in the village of Kuniran, Purwosari district of Bojonegoro. This research is quantitative and descriptive taking samples of 10 farmers who belonged to UD. Agro Kurnia (the population). The determination of samples used a purposive sampling method. This study aims to analyze the viability of cavendish bananas cultivated by UD. Kurnia Agros’s farmers, cover a total of 1500 trees on 1.8 ha of land. The research was carried out from August to December 2023. The data collection method uses PRA livelihood assessment tools, input and output flow charts, and garden sketches. The results of this study showed that the total expenditure of Rp. 18,210,000, farmers received a total receipt of Rp. 72,200,000 in one season. Total receipts were deducted from the total cost and the total revenue was Rp. 57,615,000.00 in one harvest season. The value of the R/C ratio was >1, which means that the total income was greater than the total costs so the cultivation of cavendish banana commodities at the village of Kuniran is very profitable and worthy of being continued and developed. 
FORECASTING HARGA DAGING AYAM RAS MENGGUNAKAN ALGORITMA LONG SHORT-TERM MEMORY (LSTM) DAN SARIMA DI JAWA TIMUR Septiajayanti, Dwi; Enggrayni, Freya; Dwi K, Yuana Istiqomah; Hardiyanto, Eko
Djtechno: Jurnal Teknologi Informasi Vol 6, No 3 (2025): Desember
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/djtechno.v6i3.7877

Abstract

Penelitian ini bertujuan untuk memprediksi harga daging ayam ras di Provinsi Jawa Timur sebagai upaya mendukung ketahanan pangan dan perumusan kebijakan yang responsif terhadap kebutuhan masyarakat. Data historis harga harian daging ayam ras periode Januari 2022 hingga Juli 2025 dikumpulkan melalui web scraping dari situs Siskaperbapo. Tahapan penelitian meliputi pengumpulan data, pembersihan dan normalisasi menggunakan Z-Score, analisis eksploratif, pemodelan menggunakan metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dan Long Short-Term Memory (LSTM), evaluasi model dengan metrik Root Mean Squared Error (RMSE) dan Mean Absolute Percentage Error (MAPE), serta implementasi forecasting. Hasil penelitian menunjukkan bahwa model SARIMA(0,0,2)(0,1,1,12) menghasilkan nilai RMSE sebesar 1.521 dan MAPE 38,6%, sedangkan model LSTM memberikan performa lebih baik dengan RMSE 0.002 dan MAPE 20,31%. LSTM mampu menangkap pola data dengan baik dan lebih akurat dibanding SARIMA, meskipun terdapat deviasi pada periode penurunan harga yang tajam. LSTM direkomendasikan sebagai metode peramalan harga daging ayam ras di Jawa Timur karena mampu memberikan hasil prediksi yang lebih presisi. Penelitian selanjutnya dapat mengembangkan pendekatan hibrida untuk meningkatkan akurasi peramalan jangka panjang.
The Application of Retrieval-Augmented Generation (RAG) in Developing an Intelligent Risk Management Platform: A Case Study at Statistics Jawa Timur Agus Wahyu Dupayana, I Putu; Hardiyanto, Eko
Proceedings of The International Conference on Data Science and Official Statistics Vol. 2025 No. 1 (2025): Proceedings of 2025 International Conference on Data Science and Official St
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/icdsos.v2025i1.591

Abstract

Risk management is a crucial element in the governance of modern organizations, especially for public institutions such as Statistics Indonesia (BPS), which is responsible for providing official state statistics. Currently, the conventional methodology at Statistics Jawa Timur remains manual, relying on spreadsheet software, which results in slow and unresponsive processes for addressing dynamic risks. This condition reduces the effectiveness of internal controls, particularly with a massive strategic agenda like the 2026 Economic Census (SE2026) approaching. To address these limitations, this research proposes the development of Kadiri-A Risk Management Information System and Worksheet, an intelligent system that integrates Artificial Intelligence (AI) technology, specifically Large Language Models using the RetrievalAugmented Generation (RAG) method. The Kadiri system is designed to transform risk management from a reactive to an initiative-taking process, accelerating the identification, analysis, and mitigation recommendations by leveraging BPS internal knowledge base. The RAG methodology enables an AI model, such as Google Gemini, to provide contextual and relevant suggestions based on the organization's historical data. The outcome of this development is a digital platform that speeds up risk analysis, enhances accountability, and aligns with the bureaucracy reform agenda.