Claim Missing Document
Check
Articles

Found 1 Documents
Search

Sistem Pendukung Keputusan Pemilihan Jurusan Berbasis Analisis MBTI Menggunakan Data Teks Media Sosial Nainggolan , Edo Ardo Febrian; Sujatmoko, Kris; Budiman, Gelar
eProceedings of Engineering Vol. 12 No. 6 (2025): Desember 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ketidaksesuaian antara kepribadian mahasiswa dengan jurusan kuliah yang dipilih sering kali menyebabkan penurunan motivasi belajar, rendahnya prestasi akademik, hingga peningkatan risiko putus studi. Faktor penyebabnya antara lain kurangnya pemahaman diri, pengaruh tren atau tekanan eksternal, serta keterbatasan layanan konseling karier. Penelitian ini mengembangkan sistem rekomendasi jurusan kuliah berbasis analisis kepribadian Myers-Briggs Type Indicator (MBTI) dengan memanfaatkan data media sosial dan metode machine learning. Data dikumpulkan dari platform X (Twitter) melalui scraping akun pengguna yang mencantumkan tipe MBTI pada profil, kemudian diproses melalui tahapan pre-processing meliputi tokenisasi, penghapusan stopword, lemmatisasi, normalisasi bahasa tidak baku, dan penghapusan emoji. Fitur yang digunakan mencakup Term Frequency–Inverse Document Frequency (TF-IDF), analisis sentimen, dan distribusi topik untuk menangkap pola linguistik yang relevan. Enam algoritma machine learning diuji, yaitu XGBoost, AdaBoost, Gradient Boosting, Support Vector Machine (SVM), Complement Naive Bayes, dan Logistic Regression. Hanya algoritma SVM dengan akurasi sebesar 84% dan Logistic Regression dengan akurasi 83% yang berhasil melampaui target minimum akurasi sebesar 80%. Sementara itu, model lain seperti XGBoost, Gradient Boosting, AdaBoost, dan Complement Naive Bayes masih menunjukkan akurasi yang lebih rendah, yakni pada rentang 60% hingga 72%. Model terbaik diimplementasikan pada aplikasi web berbasis Flask yang dapat memprediksi tipe MBTI dari input teks manual maupun postingan terbaru akun X, kemudian memetakan hasilnya ke rekomendasi jurusan yang relevan. Uji coba kepada responden menunjukkan 85% merasa rekomendasi yang diberikan sesuai dengan minat dan karakter mereka. Temuan ini membuktikan bahwa analisis kepribadian berbasis machine learning dari data media sosial berpotensi menjadi alat bantu pengambilan keputusan akademik yang efektif. Kata Kunci: Analisis Kepribadian, MBTI, Rekomendasi Jurusan Kuliah, Model Algoritma, Flask.