Claim Missing Document
Check
Articles

Found 2 Documents
Search

Integrasi Algoritma CNN pada Backend Sistem Identifikasi Sidik Bibir Berbasis Website Pratama, Irsyad Fadil Augusta; Saidah, Sofia; Hidayat , Bambang
eProceedings of Engineering Vol. 12 No. 6 (2025): Desember 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Identifikasi individu merupakan aspek krusial dalam bidang forensik dan keamanan digital, namun metode biometrik konvensional memiliki sejumlah keterbatasan. Sidik bibir menawarkan alternatif yang menjanjikan karena polanya yang unik dan permanen. Namun, sistem identifikasi sidik bibir yang ada seringkali belum terintegrasi secara efektif dan efisien. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sebuah sistem identifikasi individu berbasis website dengan mengintegrasikan algoritma Convolutional Neural Network (CNN) pada sisi backend. Metode yang digunakan meliputi serangkaian tahapan pengolahan citra digital yang komprehensif, dimulai dari segmentasi area bibir menggunakan model U-Net, peningkatan kontras dengan Contrast Limited Adaptive Histogram Equalization (CLAHE), ekstraksi tekstur melalui Gabor Filter, hingga binarisasi adaptif dan operasi morfologi untuk memperjelas pola. Model klasifikasi dibangun menggunakan arsitektur MobileNetV2 melalui pendekatan transfer learning. Hasil pengujian sistem pada dataset yang dikembangkan menunjukkan kinerja yang sangat optimal, dengan keberhasilan mencapai akurasi identifikasi sebesar 100% dan tingkat presisi 100%. Keberhasilan ini membuktikan bahwa integrasi algoritma CNN pada backend sistem berbasis web merupakan solusi yang efektif, akurat, dan potensial untuk dikembangkan lebih lanjut sebagai teknologi identifikasi biometrik modern.Kata kunci — CNN, identifikasi individu, sidik bibir, backend, website, pengolahan citra
Perancangan Antarmuka dan Integrasi Algoritma CNN pada Sistem Identifikasi Sidik Bibir Berbasis Web Wahyu, I Komang Trisna; Saidah, Sofia; Hidayat , Bambang
eProceedings of Engineering Vol. 12 No. 6 (2025): Desember 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Identifikasi individu merupakan aspek penting dalam bidang forensik dan keamanan digital, namun metode biometrik konvensional masih memiliki keterbatasan dalam penerapannya. Sidik bibir sebagai biometrik unik memiliki potensi besar untuk dimanfaatkan dalam proses identifikasi forensik. Penelitian ini bertujuan merancang antarmuka berbasis prinsip UI/UX serta mengimplementasikan algoritma Convolutional Neural Network (CNN) pada sistem identifikasi sidik bibir berbasis web. Perancangan antarmuka dilakukan dengan prinsip UI/UX agar sistem mudah digunakan, responsif, dan informatif. Sistem memungkinkan pengguna mengunggah citra sidik bibir yang kemudian diproses secara otomatis oleh model CNN untuk mengklasifikasikan pola sesuai data pelatihan. Proses pengolahan citra meliputi segmentasi bibir menggunakan U-Net, peningkatan kualitas dengan Contrast Limited Adaptive Histogram Equalization (CLAHE), serta ekstraksi tekstur menggunakan Gabor Filter untuk menangkap orientasi dan frekuensi garis sidik bibir. Citra hasil ekstraksi selanjutnya diproses melalui binarisasi adaptif dan operasi morfologi untuk mempertegas pola serta mengurangi noise. Model klasifikasi dibangun menggunakan arsitektur MobileNetV2 dengan transfer learning dari pre-trained model ImageNet, disesuaikan pada lapisan akhir untuk klasifikasi sidik bibir. Hasil pengujian pada dataset yang dikembangkan menunjukkan akurasi 100% dan presisi 100%, membuktikan bahwa integrasi antarmuka web yang responsif dengan model CNN dan preprocessing yang tepat mampu menghasilkan sistem identifikasi sidik bibir yang akurat, efisien, dan potensial diterapkan pada bidang forensik serta keamanan digital.Kata kunci— identifikasi sidik bibir, CNN , mobilenetv2, ui/ux, unet, gabor filter