Claim Missing Document
Check
Articles

Pengamanan Pesan pada Steganografi Citra dengan Teknik Penyisipan Spread Spectrum SAIDAH, SOFIA; IBRAHIM, NUR; WIDIANTO, MOCHAMMAD HALDI
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 7, No 3 (2019): ELKOMIKA
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v7i3.544

Abstract

ABSTRAKPada studi ini, dilakukan penggabungan metode - metode untuk memperkuat dan meningkatkan sisi keamanan proses pertukaran informasi atau pesan digital. Metode yang digunakan diantaranya adalah metode kriptografi dan metode steganografi. Implementasi pada sistem yang dibangun dilakukan dengan menyandikan pesan pada penerapan metode steganografi citra dalam menyembunyikan pesan tersandi yang dihasilkan ke dalam sebuah citra warna (RGB) dalam domain Discrete Cosine Transform dengan teknik penyisipan Spread Spectrum. Hasil penelitian menunjukan bahwa kualitas dari stego image sangat mirip dengan cover citra yang digunakan, berdasarkan perolehan nilai performansi objektif PSNR diatas 30 db dan subjektif MOS di atas nilai 4.Kata kunci: Steganografi, Discrete Cosine Transform, Spread Spectrum, PSNR, SNR ABSTRACTIn this study, a combination of methods was used to strengthen and enhance the security side of the process of exchanging information or digital messages. The methods used include cryptographic methods and steganography methods. The implementation of the system built is done by encoding the message on the application of the image steganography method in hiding the encrypted message generated into a color image (RGB) in the Discrete Cosine Transform domain with the Spread Spectrum insertion technique. The results of the study show that the quality of the stego image is very similar to the cover image used, based on the acquisition of an objective performance value of PSNR above 30 db and subjective MOS above a value of 4.Keywords: Steganografi, Discrete Cosine Transform, Spread Spectrum, PSNR, SNR
TEA LEAVES GMB SERIES CLASIFFICATION USING CONVOLUTIONAL NEURAL NETWORK Rizal, Syamsul; Pratiwi, Nor Kumalasari Caecar; Ibrahim, Nur; Vidya, Hurianti; Saidah, Sofia; Fu'adah, R Yunendah Nur
JESCE (JOURNAL OF ELECTRICAL AND SYSTEM CONTROL ENGINEERING) Vol 3, No 2 (2020): Journal Of Electrical And System Control Engineering Februari
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (860.876 KB) | DOI: 10.31289/jesce.v3i2.3320

Abstract

This study classifies GMB series tea leaves by using a convolutional neural network as a classification system. GMB series tea are the superior tea seeds in Indonesia. Gambung series, namely: GMB 1 to GMB 11, are planting material seeds that have been recommended by the Ministry of Agriculture. The potential of these tea series yield of 4,000 - 5,800 kg / ha of dried tea. The morphological similarity level of GMB 1 to GMB 11 is very high, because many elders from the clones are from the same crossing parents. During this time, the process of identifying GMB clones 1 through GMB 11 is done manually using the visual eye of an experts at PPTK Gambung. These experts are limited to be able to identify each tea series. This process is susceptible to errors in the reading of clone types, and is very dependent on the presence of the experts. If an error occurs in the process of identifying the type of clone, it will interfere with the nursery process. Errors in the selection of recommended clones will harm the process of a long period of time, because the economic age of tea plants can reach until 50 years. The potential loss of production due to misuse of plant material can reach 1,200 kg / ha per year. Against the background of these problems, it is very necessary to have a system to identify the GMB series clone. Continuous studies has been conducted to build an automation system for the identification and classification of GMB series tea clones. The system is designed using the Convolutional Neural Network (CNN) method. The results obtained from this system output in the form of accuracy with a value of 85%.
Analisis Perbandingan Metode LBP dan CLBP pada Sistem Pengenalan Individu Melalui Iris Mata Saidah, Sofia; Purnamasari, Rita; Bainuri, Aulia Novria; Wahid, Gloria Shekinah Florensia
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 6, No 3 (2020): Volume 6 No 3
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v6i3.41521

Abstract

Salah suatu metode yang digunakan untuk mengenali individu, baik berdasarkan ciri fisik, karakter maupun perilaku yang membeedakan antara satu individu dengan individu lainnya disebut sebagai biometrik. Iris mata merupakan salah satu ciri biometric yang sering digunakan untuk proses pengenalan individu. Tujuan dari penelitian ini adalah untuk mengetahui perbandingan kinerja Metode LBP dan Metode CLBP dalam melakukan pengenalan individu melalui iris matanya. Dari hasil penelitian diperoleh bahwa metode CLBP menghasilkan akurasi tertinggi sebesar 89,71%, sementara metode LBP menghasilkan akurasi 87,43%.
Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT-6 dengan Metode Convolutional Neural Network (CNN) Magdalena, Rita; Saidah, Sofia; Pratiwi, Nor Kumalasari Caecar; Putra, Akbar Trisnamulya
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 7, No 3 (2021): Volume 7 No 3
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v7i3.48195

Abstract

Lahan merupakan suatu wilayah dimana seluruh bagian biosfer dianggap tetap atau siklis yang terdapat di atas maupun di bawah permukaan bumi. Klasifikasi lahan dilakukan dengan tujuan untuk memudahkan pemantauan penggunaan serta pengaturan tata letak lahan pada suatu wilayah. Pada penelitian ini dilakukan klasifikasi terhadap citra lahan yang diperoleh dari satelit SPOT-6 dengan menggunakan Metode Convolutional Neural Network (CNN). Jenis lahan yang dilakukan klasifikasi berupa sawah, hutan, pemukiman, sungai dan bukit gundul dengan jumlah data yang digunakan adalah 350 data citra lahan. Dari total data, sebanyak 75% data digunakan sebagai data latih dan 25% digunakan sebagai data uji. Model CNN yang digunakan pada penelitian ini yaitu basic CNN dengan arsitektur yang terdiri dari 3 hidden convolutional layer, 1 fully connected layer dan 2 stride. Hasil performansi sistem yang diperoleh pada penelitian ini diantaranya adalah akurasi 95,45%, loss 0,2457, serta rata-rata dari masing-masing nilai precision, recall dan f1-score sebesar 0,92. Dapat disimpulkan bahwa metode CNN dapat digunakan secara optimal dalam mengklasifikasikan 5 jenis tutupan lahan.
Cataract Classification Based on Fundus Images Using Convolutional Neural Network Richard Bina Jadi Simanjuntak; Yunendah Fu’adah; Rita Magdalena; Sofia Saidah; Abel Bima Wiratama; Ibnu Da’wan Salim Ubaidah
JOIV : International Journal on Informatics Visualization Vol 6, No 1 (2022)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.1.856

Abstract

A cataract is a disease that attacks the eye's lens and makes it difficult to see. Cataracts can occur due to hydration of the lens (addition of fluid) or denaturation of proteins in the lens. Cataracts that are not treated properly can lead to blindness. Therefore, early detection needs to be done to provide appropriate treatment according to the level of cataracts experienced. In this study, a comparison of cataract classification based on fundus images using GoogleNet, MobileNet, ResNet, and the proposed Convolutional Neural Network was carried out. We compared four CNN architectures when implementing the Adam optimizer with a learning rate of 0.001. The data used are 399 datasets and augmented to 3200 data. This test's best and most stable results were obtained from the proposed CNN model with 92% accuracy, followed by MobileNet at 92%, ResNet at 93%, and GoogLeNet at 86%. We also make comparisons with previous research. Most of the previous studies only used two to three class categories. In this study, the system was improved by increasing system classifies into four categories: Normal, Immature, Mature, and Hypermature. In addition, the accuracy obtained is also quite good compared to previous studies using manual feature extraction. This study is expected to help medical staff to carry out early detection of cataracts to prevent the dangerous effect of cataracts and appropriate medical treatment. In the future, we want to expand the number of datasets to improve the classification accuracy of the cataract detection system.
TEA LEAVES GMB SERIES CLASIFFICATION USING CONVOLUTIONAL NEURAL NETWORK Syamsul Rizal; Nor Kumalasari Caecar Pratiwi; Nur Ibrahim; Hurianti Vidya; Sofia Saidah; R Yunendah Nur Fu'adah
JOURNAL OF ELECTRICAL AND SYSTEM CONTROL ENGINEERING Vol 3, No 2 (2020): Journal Of Electrical And System Control Engineering Februari
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jesce.v3i2.3320

Abstract

This study classifies GMB series tea leaves by using a convolutional neural network as a classification system. GMB series tea are the superior tea seeds in Indonesia. Gambung series, namely: GMB 1 to GMB 11, are planting material seeds that have been recommended by the Ministry of Agriculture. The potential of these tea series yield of 4,000 - 5,800 kg / ha of dried tea. The morphological similarity level of GMB 1 to GMB 11 is very high, because many elders from the clones are from the same crossing parents. During this time, the process of identifying GMB clones 1 through GMB 11 is done manually using the visual eye of an experts at PPTK Gambung. These experts are limited to be able to identify each tea series. This process is susceptible to errors in the reading of clone types, and is very dependent on the presence of the experts. If an error occurs in the process of identifying the type of clone, it will interfere with the nursery process. Errors in the selection of recommended clones will harm the process of a long period of time, because the economic age of tea plants can reach until 50 years. The potential loss of production due to misuse of plant material can reach 1,200 kg / ha per year. Against the background of these problems, it is very necessary to have a system to identify the GMB series clone. Continuous studies has been conducted to build an automation system for the identification and classification of GMB series tea clones. The system is designed using the Convolutional Neural Network (CNN) method. The results obtained from this system output in the form of accuracy with a value of 85%.
Identifikasi Kualitas Beras Menggunakan Metode k-Nearest Neighbor dan Support Vector Machine Sofia Saidah; Muhammad Bayu Adinegara; Rita Magdalena; Nor Kumalasari Caecar
TELKA - Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol Vol 5, No 2 (2019): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (454.549 KB) | DOI: 10.15575/telka.v5n2.114-121

Abstract

Beras merupakan makanan pokok bagi mayoritas penduduk Indonesia. Beragamnya kualitas beras di pasaran menuntut adanya pengawasan terhadap standar kualitas beras. Pengamatan terhadap kualitas beras secara visual rentan terhadap kesalahan dikarenakan subjektifitas setiap pengamat berbeda-beda. Penelitian ini dilakukan dengan mendeteksi kualitas beras berbasis morfologi citra.. Sistem didesain dengan menggunakan dua metode klasifikasi yang berbeda, yaitu k-Nearest Neighbor (K-NN) dan Support Vector Machine (SVM) untuk kemudian diperoleh sistem dengan metode terbaik. Hasil dari penelitian menunjukkan bahwa sistem mampu melakukan identifikasi kualitas beras dengan akurasi terbaik yang diperoleh yaitu 96,67% ketika digunakan metode K-NN jenis Euclidean dengan nilai k=1, dan 96,67% pada saat digunakan parameter SVM OAO dan OAA dengan tipe kernel Polynomial serta kernel option 7.
Denoising Sinyal EEG dengan Algoritma Recursive Least Square dan Least Mean Square Nor Kumalasari Caecar Pratiwi; Rita Magdalena; Yunendah Nur Fuadah; Sofia Saidah; Syamsul Rizal; Muhamad Rokhmat Isnaini
TELKA - Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol Vol 5, No 2 (2019): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (658.294 KB) | DOI: 10.15575/telka.v5n2.122-129

Abstract

EEG mengukur fluktuasi tegangan yang dihasilkan dari arus ionik yang beredar sepanjang neuron otak. Dalam pengaturan eksperimental, sinyal EEG sering terkontaminasi dengan berbagai noise akibat gerakan otot dan jantung. Noise dengan magnitudo yang lebih tinggi dari sinyal aslinya akan merusak sinyal EEG dan bisa berakibat fatal dalam analisis diagnosa. Sehingga diperlukan sebuah sistem denoising yang mampu secara maksimal mengurangi noise, tanpa menghilangkan komponen informasi penting dari sinyal EEG. Salah satu algoritma yang dapat digunakan dalam mereduksi noise pada sinyal biomedis adalah RLS dan LMS. Keuntungan utama dari penggunaan adaptif filtering termasuk RLS dan LMS adalah dapat digunakan pada lingkungan non-stasioner. Tujuan penelitian adalah melakukan uji perbandingan performansi filtering RLS dan LMS dalam mereduksi noise pada sinyal EEG. Parameter performansi yang diukur adalah waktu komputasi, MSE, SNR, dan PSNR. Dari hasil pengujian, diperoleh bahwa adaptif filtering dengan RLS dan LMS mampu mereduksi noise pada sinyal EEG dengan baik. Filter LMS memiliki kelebihan pada waktu komputasinya yang singkat, rata-rata waktu komputasi filter LMS selama 0.7 detik, jauh berbeda dengan filter RLS yang membutuhkan waktu sampai dengan 113 detik. Tetapi kehandalan sistem dari sisi MSE, SNR dan PSNR untuk filter LMS masih berada dibawah RLS untuk intensitas noise yang rendah. Besarnya parameter SNR dan PSNR pada filter RLS cenderung lebih stabil pada intesitas noise 10 dB, 20 dB, dan 30 db. Hal berbeda terjadi pada denoising dengan menggunakan filter LMS, terjadi perubahan SNR yang signifikan dari 16.14 dB pada noise 10 dB, 21.09 dB untuk noise sebesar 20 dB, dan 25.81 dB untuk intensitas noise sebesar 30 dB.
PEOPLE COUNTING FOR PUBLIC TRANSPORTATIONS USING YOU ONLY LOOK ONCE METHOD Tsabita Al Asshifa Hadi Kusuma; Koredianto Usman; Sofia Saidah
Jurnal Teknik Informatika (Jutif) Vol. 2 No. 1 (2021): JUTIF Volume 2, Number 1, June 2021
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jutif.2021.2.2.77

Abstract

People counting have been widely used in life, including public transportations such as train, airplane, and others. Service operators usually count the amount of passengers manually using a hand counter. Nowadays, in an era that most of human-things are digital, this method is certainly consuming enough time and energy. Therefore, this research is proposed so the service operator doesn't have to count manually with a hand counter, but using an image processing with You Only Look Once (YOLO) method. This project is expected that people counting is no longer done manually, but already based on computer vision. This Final Project uses YOLOv4 that is the latest method in detecting untill 80 classes of object. Then it will use transfer learning as well to change the number of classes to 1 class. This research was done by using Python programming language with various platforms. This research also used three training data scenarios and two testing data scenarios. Parameters measured are accuration, precision, recall, F1 score, Intersection of Union (IoU), and mean Average Precision (mAP). The best configurations used are learning rate 0.001, random value 0, and sub divisions 32. And the best accuration for this system is 69% with the datasets that has been trained before. The pre-trained weights have 72.68% of accuracy, 77% precision, and 62.88% average IoU. This research has resulted a proper performance for detecting and counting people on public transportations.
WEBINAR STUDENT PRESENCE SYSTEM BASED ON REGIONAL CONVOLUTIONAL NEURAL NETWORK USING FACE RECOGNITION Akbar Trisnamulya Putra; Koredianto Usman; Sofia Saidah
Jurnal Teknik Informatika (Jutif) Vol. 2 No. 2 (2021): JUTIF Volume 2, Number 2, December 2021
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jutif.2021.2.2.82

Abstract

World health organization announce Covid-19 as a pandemic so On March 15th 2020, the social distancing has been established with working, learning, and praying from home. Webinar is one of the solutions so those activities still can be done face to face and conference-based. With webinar, users can interact each other in an online meeting from home. Student presence is part of a webinar. The purpose of this research is to design an accurate student presence with a face recognition system using R-CNN method. The object of this research is a human face with sufficient light, medium, and the face must be facing the camera. This research proposed for a webinar student presence system is using face recognition with Regional Convolutional Neural Network (R-CNN). With object detection and several scenarios used in this method, the webinar student presence system using R-CNN will be more accurate than the methods that have ever been used before. This research has done four scenarios to obtain the best parameters like 45 of total layers, test data of the whole dataset percentage as 10%, RMSProp as model op- timizer, and 0.0001 learning rate. With those parameters, it have resulted the best system performance including 99.6% accuration, 1 × 10-4 loss, 100% precision, 99% recall, and 99.5% F1 Score.
Co-Authors A F Akbar Abel Bima Wiratama Aditya S.B, I Dewa Agung Akbar Trisnamulya Putra Al Brando Ardes Harjoko Aliefiya Rachman Alif Fajri Ryamizard Alrizqi, Naufal Dwi Andre Megantoro, Andre Megantoro Angga Prihantoro Arfat, Ikrar Khaera ARIS HARTAMAN Azzahra, Fatima Bainuri, Aulia Novria Bambang Hidayat Bambang Hidayat Bambang Hidayat Bongso, Dery Febryanto Darwindra Darwindra, Darwindra Dea Sifana Ramadhina Denny Darlis Desi Dwi Prihatin Dyah Ajeng Pramudhita Effendi , Doni Oktavian Ibnu Efri Suhartono Enrico Wiratama Purwanto Fadia Qothrunnada Fardiyanti, Defitriana Fathurrahman, Muhammad Hanif Fatima Azzahra Fellia Rizki Kusumowardani Fiera Meiristika Utami Firdaus, Muhammad Ilham Zuhruf Fitria, Ismaulida Nur Gaol, Satya Wira Fernanda Lumban Gelar Budiman Hilman Fauzi, Hilman Hurianti Vidya I Putu Yowan Nugraha Suparta Ibnu Da'wan Salim Ibnu Da’wan Salim Ubaidah Ibnu Da’wan Salim Ubaidah Ikhwanda, Alfan Ikrar Khaera Arfat Inung Wijayanto Iqbal Kurniawan Perdana Israndy Yainahu Iwan Iwut Tritoasmoro Jangkung Raharjo Kintan Veriana Koredianto Koredianto Koredianto Usman Mas, Muhammad Sabri Masykur, Muhammad Fadhel Affandi Muhamad Rokhmat Isnaini Muhammad Bayu Adinegara Muhammad Ilham Muhammad Ilham Muhammad, Zalfa Alif Nabila Herman Nidaan Khofiya Nor Kumalasari Caecar Nor Kumalasari Caecar Pratiwi Nur Alyyu Nur Ibrahim Perdana, Iqbal Kurniawan Pramudhita, Dyah Ajeng PRATIWI, NOR KUMALASARI CAESAR Prayudi, Yoshi Prihantoro, Angga Putra, Akbar Trisnamulya Putri , Yusnita Putri, Tasya Busrizal Putri, Yusnita Qothrunnada, Fadia R. Yunendah Nur Fu’adah Rachmat Hidayat Ashary Raditiana Patmasari Ratna Sari Ratri Dwi Atmaja Reza Ahmad Nurfauzan Richard Bina Jadi Simanjuntak Rita Magdalena Rita Magladena Rita Purnamasari Robinzon Pakpahan Salsabil Farah Aqilah Wijaya Salsabila, Afap Sangkala, Muh Aslam Mahdi Sevierda Raniprima Subiakto, Septiaini Dela Susilo, Mochammad Hilmi Suwandhi, Adhisty Putrina Syamsul Rizal Syamsul Rizal Tahta Restu Adiguna Tasya Busrizal Putri Tita Haryanti Tsabita Al Asshifa Hadi Kusuma Vidya, Hurianti Wahid, Gloria Shekinah Florensia Wibisono Sabdo Utomo WIDIANTO, MOCHAMMAD HALDI Widya Alisya Kusuma Ningrum Yunendah Fu’adah Zakiah Zakiah