This Author published in this journals
All Journal Agrikultura
Diptaningsari, Danar
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Deteksi Cerdas Penyakit Tanaman Kopi Robusta Berbasis Deep Learning Menggunakan Variasi YOLO Harmiansyah, Harmiansyah; Oviana, Ella Trilia; Fitrawan, Mhd Kadar; Putra, Pramana; Diptaningsari, Danar; Meidaliyantisyah, Meidaliyantisyah
Agrikultura Vol 36, No 3 (2025): Desember, 2025
Publisher : Fakultas Pertanian Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/agrikultura.v36i3.64004

Abstract

Tanaman kopi menjadi populer karena produk minuman kopi yang memiliki aroma dan rasa unik. Ditengah populernya tanaman kopi terdapat permasalahan dalam pengendalian penyakit seperti bercak daun dan karat daun yang berdampak pada produksi tanaman kopi menurun. Sehingga dibutuhkan sistem deteksi cerdas berakurasi tinggi untuk mengidentifikasi jenis penyakit pada tanaman kopi sebagai langkah penanganan dini.Tujuan pada penelitian ini adalah implementasi menggunakan variasi model pralatih YOLO (You Only Look Once) untuk mendeteksi penyakit tanaman kopi robusta berdasarkan citra daun. Penelitian ini menggunakan 3 jenis model pralatih dari YOLO yaitu YOLOv5, YOLOv7 dan YOLOv8 dengan parameter hyperparameter yaitu 150 epoch, batch size 16 dan learning rate 0,001 sedangkan untuk optimizer yang digunakan adalah SGD (Stochastic Gradient Descent). Dataset penelitian adalah citra daun tanaman kopi yang didapatkan dari pengambilan manual menggunakan tools handphone dengan spesifiaksi kamera 20 MP berlokasi di Kebun Percobaan Tegineneng Natar, Balai Penerapan Modernisasi Pertanian (BRMP) Lampung. Dataset diberi augmentasi berupa shear, blur dan rotation. Berdasarkan hasil kinerja model deteksi objek berbasis YOLO, model terbaik yang didapatkan adalah YOLOv8 dengan nilai mAP@50 sebesar 99,5% dan mAP@50-95 adalah 94,6% dalam waktu training selama 1,748 jam. Testing yang dilakukan menggunakan YOLOv8 menghasilkan nilai evaluasi metrik yaitu nilai akurasi 100%, presisi 100%, recall 100% dan F1 score 100% untuk kelas daun sehat dan daun karat. Sedangkan kelas daun bercak mendapatkan nilai akurasi 94%, presisi 100%, recall 94% dan F1 score 97%.