Rizky Andrea Arifa
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Model Machine Learning Untuk Prediksi Risiko Penyakit Liver Dengan Random Forest Teroptimasi Rizky Andrea Arifa; Nana Suarna; Agus Bahtiar; Nining Rahaningsih; Willy Prihartono
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.204

Abstract

Penyakit liver merupakan salah satu kondisi kronis dengan tingkat mortalitas tinggi, sehingga diperlukan pendekatan prediksi yang akurat untuk mendukung deteksi dini. Penelitian ini bertujuan mengembangkan model machine learning untuk memprediksi risiko penyakit liver menggunakan algoritma Random Forest yang dioptimalkan dengan RandomizedSearchCV. Dataset yang digunakan terdiri dari 1.700 entri yang mencakup variabel klinis dan gaya hidup, termasuk usia, jenis kelamin, BMI, konsumsi alkohol, kebiasaan merokok, riwayat genetik, aktivitas fisik, diabetes, hipertensi, serta hasil Liver Function Test. Proses penelitian meliputi preprocessing, normalisasi skala, pembagian data menggunakan train-test split 80:20, pembangunan model baseline, dan optimasi hiperparameter. Hasil eksperimen menunjukkan bahwa optimasi menghasilkan peningkatan performa model, dengan akurasi 0.91, peningkatan recall sebesar 3.20%, dan AUC-ROC mencapai 0.96. Analisis feature importance menunjukkan bahwa LiverFunctionTest, BMI, dan AlcoholConsumption merupakan fitur paling berpengaruh terhadap prediksi risiko penyakit liver. Dengan demikian, Random Forest teroptimasi terbukti efektif dalam menghasilkan model prediksi yang akurat dan dapat digunakan sebagai alat pendukung keputusan dalam deteksi dini penyakit liver.
Model Machine Learning Untuk Prediksi Risiko Penyakit Liver Dengan Random Forest Teroptimasi Rizky Andrea Arifa; Nana Suarna; Agus Bahtiar; Nining Rahaningsih; Willy Prihartono
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.204

Abstract

Penyakit liver merupakan salah satu kondisi kronis dengan tingkat mortalitas tinggi, sehingga diperlukan pendekatan prediksi yang akurat untuk mendukung deteksi dini. Penelitian ini bertujuan mengembangkan model machine learning untuk memprediksi risiko penyakit liver menggunakan algoritma Random Forest yang dioptimalkan dengan RandomizedSearchCV. Dataset yang digunakan terdiri dari 1.700 entri yang mencakup variabel klinis dan gaya hidup, termasuk usia, jenis kelamin, BMI, konsumsi alkohol, kebiasaan merokok, riwayat genetik, aktivitas fisik, diabetes, hipertensi, serta hasil Liver Function Test. Proses penelitian meliputi preprocessing, normalisasi skala, pembagian data menggunakan train-test split 80:20, pembangunan model baseline, dan optimasi hiperparameter. Hasil eksperimen menunjukkan bahwa optimasi menghasilkan peningkatan performa model, dengan akurasi 0.91, peningkatan recall sebesar 3.20%, dan AUC-ROC mencapai 0.96. Analisis feature importance menunjukkan bahwa LiverFunctionTest, BMI, dan AlcoholConsumption merupakan fitur paling berpengaruh terhadap prediksi risiko penyakit liver. Dengan demikian, Random Forest teroptimasi terbukti efektif dalam menghasilkan model prediksi yang akurat dan dapat digunakan sebagai alat pendukung keputusan dalam deteksi dini penyakit liver.