Koyuncu, Hasan
Prof. Dr. Ismail SARITAS

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Lupsix: A Cascade Framework for Lung Parenchyma Segmentation in Axial CT Images Koyuncu, Hasan
International Journal of Intelligent Systems and Applications in Engineering Vol 6, No 4 (2018)
Publisher : Prof. Dr. Ismail SARITAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18201/ijisae.2018448460

Abstract

Lung imaging and computer aided diagnosis (CAD) play a critical role in detection of lung diseases. The most significant part of a lung based CAD is to fulfil the parenchyma segmentation, since disease information is kept in the parenchyma texture. For this purpose, parenchyma segmentation should be accurately performed to find the necessary diagnosis to be used in the treatment. Besides, lung parenchyma segmentation remains as a challenging task in computed tomography (CT) owing to the handicaps oriented with the imaging and nature of parenchyma. In this paper, a cascade framework involving histogram analysis, morphological operations, mean shift segmentation (MSS) and region growing (RG) is proposed to perform an accurate segmentation in thorax CT images. In training data, 20 axial CT images are utilized to define the optimum parameter values, and 150 images are considered as test data to objectively evaluate the performance of system. Five statistical metrics are handled to carry out the performance assessment, and a literature comparison is realized with the state-of-the-art techniques. As a result, parenchyma tissues are segmented with success rates as 98.07% (sensitivity), 99.72% (specificity), 99.3% (accuracy), 98.59% (Dice similarity coefficient) and 97.23% (Jaccard) on test dataset.