Claim Missing Document
Check
Articles

Found 5 Documents
Search

Implementasi Metode Fuzzy Sugeno Untuk Prediksi Penentuan Porsi Dana Pembangunan Perumahan Satria, Budy; Radillah, Teuku; Tambunan, Leonard; Iqbal, Muhammad
JSAI (Journal Scientific and Applied Informatics) Vol 4, No 1 (2021): Januari
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v4i1.1330

Abstract

Penelitian ini menggunakan data yang didapatkan langsung dari CV. Fujiyama Abadi dengan 3 variabel yaitu lantai, bahan dan rangka. CV. Fujiyama Abadi Takengon merupakan salah satu perusahaan yang bergerak dalam bidang perumahan Terdapat 3 tipe perumahan yaitu 21, 36 dan 45. Metode yang dipakai dalam prediksi penentuan porsi dana pembangunan perumahan ini adalah Logika Fuzzy dengan Metode Fuzzy Sugeno. Masing-masing variabel memiliki domain yaitu murah, sedang dan mahal. Proses inferensi pada penelitian ini menggunakan teori himpunan fuzzy yang berbentuk IF-THEN dan penalaran fuzzy. Hasil perhitungan dari metode Fuzzy Sugeno jika Lantai rumah seharga [Rp4.000.000], Bahan seharga [Rp.27.000.000] dan Rangka seharga [Rp6.500.000] maka perkiraan dana pembangunan yang dibutuhkan yaitu sekitar Rp. 79.835.000
ADDITIVE RATIO ASSESSMENT ALGORITHM ON DECISION SUPPORT SYSTEM FOR SELECTING THE BEST SMA AND SMK Satria, Budy; Iqbal, Muhammad; Radillah, Teuku
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol 7 No 1 (2021): JITK Issue August 2021
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1282.25 KB) | DOI: 10.33480/jitk.v7i1.2217

Abstract

Determination of the best SMA and SMK through the Education Office Technical Implementation Unit (UPTD) of Pinggir Subdistrict, Bengkalis Regency, needs to be done to provide information to parents, especially students who want to continue their schooling to SMA and SMK level in order to know the ranking of destination schools and be able to make choices. The assessment is still done manually and has not used the right ranking method to determine the best school at the SMA and SMK level, especially in Pinggir District, Bengkalis Regency so that the assessment system is still not on target so that there is difficulty in the process of selecting the best SMA and SMK in the Pinggir Education UPTD. Bengkalis Regency to be right on target. The purpose of this study is to provide convenience in the process of selecting the best SMA and SMK with a decision support system using 7 criteria, namely school facilities, accreditation status, graduates, student achievement, location, human resources and extracurricular activities. The method used in this research is to use the Additive Ratio Assessment (ARAS). There are 8 schools that serve as alternative data, namely SMAN 1, SMAN 2, SMAN 3, SMAN 4, SMAN 5, SMAN 6, SMKN 1 and SMKN 2. The results obtained are that there are 4 recommended schools, namely SMKN 2 = 0.14286 , SMAN 2 = 0.11429, SMAN 3 = 0.1149 and SMAN 6 = 0.11429. So that the results of this research can help in determining the best school.
Analisis Perbandingan Model Bert Dan Xlnet Untuk Klasifikasi Tweet Bully Pada Twitter Radillah, Teuku; Veza, Okta; Defit, Sarjon
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 6: Desember 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.1169096

Abstract

Fenomena bullying di media sosial, khususnya di Twitter, telah menjadi isu yang semakin memprihatinkan dengan dampak signifikan terhadap kesehatan mental pengguna. Dalam rangka mengatasi masalah ini, deteksi otomatis tweet yang mengandung konten bullying menjadi sangat penting. Penelitian ini bertujuan untuk membandingkan performa dua model pemrosesan bahasa alami terbaru, yaitu BERT (Bidirectional Encoder Representations from Transformers) dan XLNet, dalam klasifikasi tweet yang mengandung bullying. Metodologi penelitian ini melibatkan pengumpulan dataset tweet yang telah dilabeli sebagai bullying atau non-bullying. Proses preprocessing teks dilakukan untuk membersihkan dan menyiapkan data sebelum digunakan dalam pelatihan model. Kedua model, BERT dan XLNet, dilatih dan diuji menggunakan dataset yang sama. Evaluasi performa dilakukan dengan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa kedua model memiliki kemampuan yang baik dalam mengidentifikasi tweet bullying, akan tetapi XLNet menunjukkan performa yang lebih unggul dibandingkan BERT dengan tingkat akurasi sebesar 95%. Dengan nilai presisi  = 100%, recall  = 0,87%, dan F1-score = 0,88%. XLNet mampu menangkap konteks dan nuansa bahasa yang lebih kompleks dalam tweet, yang berkontribusi pada akurasi klasifikasi yang lebih tinggi. Penelitian ini memberikan kontribusi penting dalam bidang deteksi bullying di media sosial dengan menunjukkan bahwa penggunaan model XLNet lebih efektif dibandingkan BERT. Temuan ini dapat membantu platform seperti Twitter dalam mengidentifikasi dan mencegah konten bullying, sehingga menciptakan lingkungan online yang lebih aman bagi pengguna, serta dapat digunakan sebagai dasar untuk pengembangan sistem deteksi bullying yang lebih canggih dan efisien di masa depan.   Abstract The phenomenon of bullying on social media, particularly on Twitter, has become an increasingly concerning issue with significant impacts on users' mental health. In order to address this issue, automatic detection of tweets containing bullying content is crucial. This study aims to compare the performance of two recent natural language processing models, namely BERT (Bidirectional Encoder Representations from Transformers) and XLNet, in the classification of tweets containing bullying. The research methodology involves collecting a dataset of tweets that have been labelled as bullying or non-bullying. Text preprocessing is done to clean and prepare the data before it is used in model training. Both models, BERT and XLNet, were trained and tested using the same dataset. Performance evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The results show that both models have a good ability to identify bullying tweets, but XLNet shows superior performance compared to BERT with an accuracy rate of 95%. With precision = 100%, recall = 0.87%, and F1-score = 0.88%. XLNet is able to capture more complex context and language nuances in tweets, which contributes to higher classification accuracy. This research makes an important contribution to the field of bullying detection on social media by showing that the use of the XLNet model is more effective than BERT. These findings can help platforms like Twitter identify and prevent bullying content, thereby creating a safer online environment for users, and can be used as a basis for the development of more sophisticated and efficient bullying detection systems in the future.
Enhancing U-Net for Wrist Fracture Segmentation in X-ray Images using Adaptive Callbacks and Weighted Loss Functions Radillah, Teuku; Defit, Sarjon; Nurcahyo, Gunadi Widi
Journal of Applied Data Sciences Vol 6, No 4: December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i4.952

Abstract

The detection of wrist fracture through medical imaging is causing considerable challenges due to the subtle and variable manifestation of such ruptures, necessitating precise and reliable segmentation methods. Therefore, this research aimed to propose an improved U-Net model for detecting wrist fracture. The model incorporated two innovations, namely adaptive callback training and weighted loss combination. The adaptive callback mechanism could be performed by dynamically adjusting the training parameters based on the model performance to prevent overfitting and accelerate convergence. At the same time, the loss function combined Dice Loss and Binary Cross-Entropy (BCE) Loss with linear as well as non-linear exponential weighting strategies, ensuring balanced optimization between region-based accuracy and pixel classification. During this analysis, a series of experiments were conducted on a curated wrist X-ray image dataset, and the results showed that the proposed method expressed superior performance in terms of segmentation accuracy when compared with previous U-Net and other state-of-the-art procedures. The proposed method achieved 91% accuracy, 87% precision, 86% recall, and 87% F1 score. Following this discussion, the findings showed the efficacy of the adaptive training design and loss function in improving the strength and sensitivity of the model in detecting wrist fracture
Implementasi SPK Menggunakan Metode ARAS Untuk Penentuan SMA dan SMK Terbaik Berbasis Website Iqbal, Muhammad; Satria, Budy; Radillah, Teuku
The Indonesian Journal of Computer Science Vol. 10 No. 2 (2021): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v10i2.3017

Abstract

Many students want to continue their education to Senior High School (SMA) and Vocational High School (SMK), especially in the Pinggir District area. However, students and parents find it difficult to choose the best school due to the lack of information obtained. From this problem, a decision support system is needed to provide recommendations for determining the best SMA and SMK. The method used is ARAS (Additive Ratio Assessment). This method uses the concept of calculation in the form of ordering utility values (i) from the highest to the lowest value. The school data used are 8, namely SMAN 1, SMAN 2, SMAN 3, SMAN 4, SMAN 5, SMAN 6, SMKN 1, SMKN 2 and the criteria data are 7, namely School Facilities, Accreditation, Graduate Quality, HR, Extracurricular, School Achievement and Location. From the results of the research conducted, there are 5 schools with the best school recommendations and their calculated values, namely SMKN 1 = 0, 122477, SMKN 2 = 0.121488, SMAN 5 = 0.116763, SMAN 6 = 0.112653 and SMAN 1 = 0.108850.