Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 3 No 8 (2019): Agustus 2019

Rekomendasi Lagu berdasarkan Lirik dan Genre Lagu menggunakan Metode Word Embedding (Word2Vec)

Melati Ayuning Lestari (Fakultas Ilmu Komputer, Universitas Brawijaya)
Putra Pandu Adikara (Fakultas Ilmu Komputer, Universitas Brawijaya)
Sigit Adinugroho (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
15 Aug 2019

Abstract

Listening to songs has become a norm in society, serving many different purposes, and songs are released frequently nowadays, especially by media-service providers. Users need to overcome the struggle of selecting specific songs because of the enormous information provided by media-service providers. The song recommendation model can play an important part in this puzzlement as an automatic song selector, thus improving the user's experience. In this research, the song recommendation model uses Word2Vec Skip-Gram that functions as a query expansion for the sole purpose of finding the desired lyrics by producing a weight for query expansion. TF-IDF is first used to select the words in the lyrics that will be expanded. The model will give a list of 10 recommended songs. The evaluation results of the recommended song list shows the highest average of precision@10 score of 0.584 and the highest Mean Average Score (MAP) score of 0.7278.

Copyrights © 2019






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...