Claim Missing Document
Check
Articles

Pencarian Ruang Warna Kulit Manusia Berdasarkan Nilai Karakteristik (λ) Matrik Window Citra Adikara, Putra Pandu; Rahman, Muh. Arif; Santosa, Edy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1, No 1 (2014)
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (880.856 KB)

Abstract

Abstrak Perkembangan transaksi dan distribusi data yang sangat besar, terutama saat teknologi informasi dan komunikasi melalui  web bisa dijangkau oleh siapa saja menggunakan perangkat yang semakin beragam, membuat pengguna memerlukan aplikasi yang serba mudah untuk digunakan. Diantaranya adalah identifikasi obyek yang berada dalam data multimedia berupa teks, gambar maupun suara. Deteksi warna, terutama deteksi warna kulit manusia adalah tahap awal identifikasi keberadaan manusia pada citra 2 dimensi. Terdapat sejumlah metode untuk menentukan apakah suatu pixel pada gambar tersebut merupakan warna kulit manusia. Penelitian sebelumnya telah membuat ruang warna berbasis pixel diantaranya adalah ruang warna RGB, normalisasi RGB, HIS/HSV, TSL, YCbCr dll. Suatu matrik bujur sangkar NxN mempunyai nilai karakteristik (λ) sebanyak N dimana nilai masing-masing berupa bilangan real. Suatu citra dapat dipecah menjadi M matrik bujur sangkar dan kemudian dicari nilai λ  nya. Penelitian ini akan mencari ruang warna kulit manusia berdasarkan nilai karakteristik (ƛ) matrik window citra. Dari hasil pengujian hamper semua warna kulit dapat dideteksi, namun image untuk warna kulit yang tidak mencolok beberapa obyek pada image dapat ditampilkan dengan baik meskipun bukan kulit. Kata kunci: Citra Kulit, Nilai Karakteristik (λ), Matrik Window Abstract The development of the transaction and distribution of huge data, especially when the information technology and communication via the web can be reached by anyone using the increasingly diverse, making the user requires an application that completely easy to use. Among them is the identification of objects that are in the multimedia data such as text, images and sound. Color detection, particularly the detection of human skin color is an early stage identification of human presence on the 2-dimensional image. There are a number of methods to determine whether a pixel in the image is the color of human skin. Previous studies have made such pixel based color space is RGB color space, normalized RGB, HIS/HSV, TSL, YCbCr etc. An NxN square matrix has eigenvalues ​​(λ) of N where the value of each form of real numbers. An image can be broken down into a square matrix M and then sought its λ value. This study will look for human skin color space based on the value of the characteristic (ƛ) matrix image window. From the test results almost all skin colors can be detected, but the image for an inconspicuous color multiple objects in the image can be displayed well although not leather. Keywords: skin image, value of the characteristic(λ), Matrix Windows
Regresi linier berbasis clustering untuk deteksi dan estimasi halangan pada smart wheelchair Adikara, Putra Pandu; Wihandika, Randy Cahya; Utaminingrum, Fitri; Sari, Yuita Arum; Fauzi, M Ali; Syauqy, Dahnial; Maulana, Rizal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): Januari-Juni (3/7)
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1160.804 KB) | DOI: 10.26594/register.v3i1.587

Abstract

 Penelitian ini bertujuan untuk mengusulkan sebuah pendekatan dalam mendeteksi halangan dan memperkirakan jarak halangan untuk diterapkan pada kursi roda pintar (smart wheelchair) yang dilengkapi kamera dan line laser. Kamera menangkap sinar line laser yang jatuh di depan kursi roda untuk mengenali adanya halangan pada lintasan berdasarkan bentuk citra line laser tersebut. Estimasi jarak halangan dihitung dari hasil Regresi Linier. Metode Regresi Linier yang digunakan dalam penelitian ini adalah model bertingkat dengan k-Means clustering. Metode Regresi Linier model bertingkat digunakan untuk merepresentasikan korelasi antara jarak line laser pada citra dan jarak halangan secara aktual. Hasil metode Regresi Linier model bertingkat dengan k-Means clustering yang diujicobakan memberikan hasil yang lebih baik dengan RMSE sebesar 3.541 cm dibanding dengan Regresi Liner sederhana dengan RMSE sebesar 5.367 cm.   This research aim to propose a new approach to detect obstacles and to estimate the distance of the obstacle which is in this case applied to smart wheelchair equipped with camera and line laser. The camera capture the image of line laser reflected in front of the wheelchair to detect any existing obstacle on the wheelchair’s pathway based on the line shape of reflected line laser. Obstacle’s distance is estimated using Linier Regression. Linier Regression method used in this research is stepwise model using k-Means clustering. Linear Regression method with stepwise model will be used to represent the correlation between the distance of the line laser in the image and the actual distance of the obstacle in real world. The result of Linear Regression with stepwise model using k-Means clustering gave better result with RMSE of 3.541 cm than simple Linear Regression with RMSE of 5.367 cm.
Regresi linier berbasis clustering untuk deteksi dan estimasi halangan pada smart wheelchair Adikara, Putra Pandu; Wihandika, Randy Cahya; Utaminingrum, Fitri; Sari, Yuita Arum; Fauzi, M Ali; Syauqy, Dahnial; Maulana, Rizal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v3i1.587

Abstract

 Penelitian ini bertujuan untuk mengusulkan sebuah pendekatan dalam mendeteksi halangan dan memperkirakan jarak halangan untuk diterapkan pada kursi roda pintar (smart wheelchair) yang dilengkapi kamera dan line laser. Kamera menangkap sinar line laser yang jatuh di depan kursi roda untuk mengenali adanya halangan pada lintasan berdasarkan bentuk citra line laser tersebut. Estimasi jarak halangan dihitung dari hasil Regresi Linier. Metode Regresi Linier yang digunakan dalam penelitian ini adalah model bertingkat dengan k-Means clustering. Metode Regresi Linier model bertingkat digunakan untuk merepresentasikan korelasi antara jarak line laser pada citra dan jarak halangan secara aktual. Hasil metode Regresi Linier model bertingkat dengan k-Means clustering yang diujicobakan memberikan hasil yang lebih baik dengan RMSE sebesar 3.541 cm dibanding dengan Regresi Liner sederhana dengan RMSE sebesar 5.367 cm.   This research aim to propose a new approach to detect obstacles and to estimate the distance of the obstacle which is in this case applied to smart wheelchair equipped with camera and line laser. The camera capture the image of line laser reflected in front of the wheelchair to detect any existing obstacle on the wheelchair’s pathway based on the line shape of reflected line laser. Obstacle’s distance is estimated using Linier Regression. Linier Regression method used in this research is stepwise model using k-Means clustering. Linear Regression method with stepwise model will be used to represent the correlation between the distance of the line laser in the image and the actual distance of the obstacle in real world. The result of Linear Regression with stepwise model using k-Means clustering gave better result with RMSE of 3.541 cm than simple Linear Regression with RMSE of 5.367 cm.
Movie recommender systems using hybrid model based on graphs with co-rated, genre, and closed caption features Adikara, Putra Pandu; Sari, Yuita Arum; Adinugroho, Sigit; Setiawan, Budi Darma
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 7, No 1 (2021): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v7i1.2081

Abstract

A movie recommendation is a long-standing challenge. Figuring out the viewer’s interest in movies is still a problem since a huge number of movies are released in no time. In the meantime, people cannot enjoy all available new releases or unseen movies due to their limited time. They also still need to choose which movies to watch when they have spare time. This situation is not good for the movie business too. In order to satisfy people in choosing what movies to watch and to boost movie sales, a system that can recommend suitable movies is required, either unseen in the past or new releases. This paper focuses on the hybrid approach, a combination of content-based and collaborative filtering, using a graph-based model. This hybrid approach is proposed to overcome the drawbacks of combination in the content-based and collaborative filtering. The graph database, Neo4j is used to store the collaborative features, such as movies with its genres, and ratings. Since the movie’s closed caption is rarely considered to be used in a recommendation, the proposed method evaluates the impact of using this syntactic feature. From the early test, the combination of collaborative filtering and content-based using closed caption gives a slightly better result than without closed caption, especially in finding similar movies such as sequel or prequel.
Hybrid Head Tracking for Wheelchair Control Using Haar Cascade Classifier and KCF Tracker Fitri Utaminingrum; Yuita Arum Sari; Putra Pandu Adikara; Dahnial Syauqy; Sigit Adinugroho
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 4: August 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i4.6595

Abstract

Disability may limit someone to move freely, especially when the severity of the disability is high. In order to help disabled people control their wheelchair, head movement-based control is preferred due to its reliability. This paper proposed a head direction detector framework which can be applied to wheelchair control. First, face and nose were detected from a video frame using Haar cascade classfier. Then, the detected bounding boxes were used to initialize Kernelized Correlation Filters tracker. Direction of a head was determined by relative position of the nose to the face, extracted from tracker’s bounding boxes. Results show that the method effectively detect head direction indicated by 82% accuracy and very low detection or tracking failure.
Rekomendasi Kata Berbahasa Alay Ke Bahasa Indonesia Menggunakan Algoritma Fonetik dan Levenshtein Distance Putra Pandu Adikara
Jurnal POINTER Vol 2, No 2 (2011): Jurnal Pointer - Ilmu Komputer
Publisher : Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAK Kata dalam bahasa Alay yang digunakan remaja akhir-akhir ini dapat menyulitkan pembacaan dan pengertian karena ketidakbakuan ejaan kata sesuai kaidah EYD. Ketidakbakuan ejaan ini dapat dikenali melalui algoritma spelling checker. Algoritma spelling checker yang digunakan adalah algoritma fonetik. Algoritma fonetik ini menghasilkan kunci dari suatu kata yang nantinya dihitung kedekataannya dengan kunci kata-kata lain yang ada di database. Penghitungan kedekatan kunci sebagai kemiripan kata di sini menggunakan algoritma Levenshtein Distance. Hasil eksperimen menunjukkan recall terhadap kata dalam bahasa Alay hasil pembangkitan Alay Generator sebesar 92.5%, sedangkan recall dari kata yang dibuat manual sebesar 60%.   Kata kunci: bahasa alay, bahasa Indonesia, cek ejaan, algoritma fonetik, levenshtein distance   ABSTRACT Words in bahasa Alay used recently by nowadays teenagers can be really difficult to read and to understand because of its non standard spelling and not following Bahasa Indonesia’s improved spelling (EYD) rules. This non standard spelling can be recognized by using spelling checker algorithm. Spelling checker algorithm proposed here is using phonetic algorithm. Phonetic algorithm generates key from a word which later the similarity with other words’ key, stored in database, can be calculated. Calculation of the keys similarity, as word similarity, used in this paper is using Levenshtein Distance. Experiment result shows that recall of words generated by Alay Generator is 92.5% while recall of words manually made is 60%.   Keywords: alay language, Indonesian language, spelling check, phonetic algorithm, levenshtein distance
Aplikasi Fuzzy Ordered Weighted Averaging (OWA) Dalam Multi Kriteria Analisis Untuk Penentuan Kelas Area Bencana Lumpur Lapindo Candra Dewi; Ani Budi Astuti; Putra Pandu Adikara
Jurnal POINTER Vol 2, No 1 (2011): Jurnal Pointer - Ilmu Komputer
Publisher : Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAK Penentuan area yang berbahaya dari suatu sumber bencana sangat penting untuk memberikan informasi tentang area yang mungkin terdampak bencana tersebut. Dalam analisa tingkat bahaya terhadap bencana alam kadang timbul fuzziness yang terkait dengan adanya informasi yang tidak lengkap terhadap lingkungan sistem dan ketidakpastian dalam pengukuran. Untuk kasus analisa tingkat bahaya yang memiliki informasi yang tidak presisi, metode standarisasi yang bisa digunakan adalah dengan metode fuzzy. Tujuan dari penelitian ini adalah untuk menerapkan metode fuzzy Ordered Weighted Averaging (OWA) dalam evaluasi multi kriteria daerah berbahaya Lumpur Lapindo. Hasil yang diperoleh dari penerapan fuzzy dari masing-masing kriteria ini kemudian digunakan untuk menampilkan informasi area berdasarkan tingkat bahaya dengan menggunakan analisa spasial. Sedangkan untuk analisa sensitifitas, digunakan nilai kriteria pada batas bawah, batas tengah dan batas atas. Berdasarkan hasil analisa spasial diketahui bahwa sekitar 56,35% area dikategorikan kelas kerawanan rendah (Z3), daerah dengan kelas kerawanan sedang (Z2) mencakup luas sekitar 28,07%, kelas keranan tinggi (Z1) dan daerah tidak rawan (Z4) secara berturut-turut hanya menempati luasan 15,33% dan 0,24% dari total area pemukiman. Dari hasil overlay peta kerawanan ini dengan peta terdampak dapat diketahui bahwa terdapat daerah diluar daerah terdampak yang termasuk dalam kelas kerawanan sedang dan tinggi. Dan dari hasil analisa sensitifitas diketahui bahwa zona Z1 dan Z4 tidak begitu sensitif untuk nilai dari batas tengah sampai atas, zona Z2 dan Z3 tidak begitu sensitif untuk nilai dari batas bawah sampai batas tengah.   Kata kunci: analisa multi kriteria, analisa spasial, fuzzy OWA   ABSTRACT Determining vulnerable area of hot mud volcano is important to provide information on the extent of the areas affected by the hazard. Vulnerability analysis for natural hazard deals with uncertainty arises due to the lack of information about system behavior (vagueness, ambiguity, fuzziness) and inexactness of measurement (impreciseness, fuzziness). Fuzzy approach can be used to overcome this fuzziness. The objectives of this paper are to implement fuzzy Ordered Weighted Averaging (OWA) for multi-criteria evaluation of mud volcano vulnerable area and to develop mud volcano vulnerable map using proposed method in Lapindo Mud area. The calculation of membership degree used sigmoid and triangular membership function. The sensitivity analysis was done at lower, middle and upper value of the range. Base on the spatial analysis was found that low hazardous area (Z3) covered about 56.35% area, while 28.07% considered as moderate hazardous area (Z2), 15.33% as high hazardous area (Z1) and 0.24% as not impacted area (Z4). Base on sensitivity analysis also found that classes Z1 and Z4 were not enough sensitive between the middle and upper range, while classes Z2 and Z3 were not enough sensitive between the lower and middle range.   Keywords: multi criteria analysis, spatial analysis, fuzzy OWA
Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile) Ferly Gunawan; M. Ali Fauzi; Putra Pandu Adikara
Systemic: Information System and Informatics Journal Vol. 3 No. 2 (2017): Desember
Publisher : Program Studi Sistem Informasi Fakultas Sains dan Teknologi, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (956.948 KB) | DOI: 10.29080/systemic.v3i2.234

Abstract

Perkembangan aplikasi mobile yang pesat membuat banyak aplikasi diciptakan dengan berbagai kegunaan untuk memenuhi kebutuhan pengguna. Setiap aplikasi memungkinkan pengguna untuk memberi ulasan tentang aplikasi tersebut. Tujuan dari ulasan adalah untuk mengevaluasi dan meningkatkan kualitas produk ke depannya. Untuk mengetahui hal tersebut, analisis sentimen dapat digunakan untuk mengklasifikasikan ulasan ke dalam sentimen positif atau negatif. Pada ulasan aplikasi biasanya terdapat salah eja sehingga sulit dipahami. Kata yang mengalami salah eja perlu dilakukan normalisasi kata untuk diubah menjadi kata standar. Karena itu, normalisasi kata dibutuhkan untuk menyelesaikan masalah salah eja. Penelitian ini menggunakan normalisasi kata berbasis Levenshtein distance. Berdasarkan pengujian, nilai akurasi tertinggi terdapat pada perbandingan data latih 70% dan data uji 30%. Hasil akurasi tertinggi dari pengujian menggunakan nilai edit <=2 adalah 100%, nilai edit tertinggi kedua didapat pada nilai edit <=1 dengan akurasi 96,4%, sedangkan nilai edit dengan akurasi terendah diperoleh pada nilai edit <=4 dan <=5 dengan akurasi 66,6%. Hasil dari pengujian Naive Bayes-Levenshtein Distance memiliki nilai akurasi tertinggi yaitu 96,9% dibandingkan dengan pengujian Naive Bayes tanpa Levenshtein Distance dengan nilai akurasi 94,4%.
Retinal blood vessel segmentation using multiple line operator-based methods Randy Cahya Wihandika; Putra Pandu Adikara; Sigit Adinugroho; Yuita Arum Sari; Fitri Utaminingrum
Bulletin of Electrical Engineering and Informatics Vol 11, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i3.3026

Abstract

The morphological alterations of the retinal blood vessels are important indicators that can be utilized to diagnose and track the progression of a number of disorders. Diabetic retinopathy (DR) is a condition that destroys the retina and is the major cause of visual loss caused by high blood glucose levels. One of the retinal objects impacted by DR is the blood vessel. By regularly monitoring changes in the retinal blood vessels, severe DR or even vision loss can be avoided. The condition of the blood vessel can be examined by segmenting the blood vessel area from a digital fundus image. Segmenting retinal blood vessels manually, on the other hand, is time-consuming and tedious, and especially when dealing with a high number of photographs. As a result, a system for segmenting retinal blood vessels automatically is crucial. Furthermore, methods for automatically segmenting retinal blood vessels are useful for person authentication systems based on the retina. Blood vessel segmentation can be accomplished in a number of ways. Based on the prior line operator method, an improved version of the line operator method is proposed in this paper. The proposed method demonstrates an improvement in accuracy over the previous method, with an accuracy of 94.61%.
Enhancing the capability of online teaching for elementary school teacher through interactive video making training Yuita Arum Sari; Randy Cahya Wihandika; Sigit Adinugroho; Indriati Indriati; Putra Pandu Adikara
Community Empowerment Vol 7 No 7 (2022)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (371.453 KB) | DOI: 10.31603/ce.6616

Abstract

The strategies and learning mechanisms that have been widely used up until now have changed as a result of the Covid-19 pandemic. Learning from home (BDR) activities are used to replace face-to-face learning activities. Effective implementation of BDR requires information technology skills, especially the use of learning support software. Thus, it is imperative that teachers receive training in the use of learning support software in order to advance their abilities to teach online effectively and efficiently. In this community service, training activities for making creative teaching materials were carried out for elementary school teachers. The creative teaching material is in the form of animation, so that it attracts the interest of students and is expected to increase the effectiveness of online learning. This community service activity begins with a pre-test, continues with the delivery of material, and ends with the provision of a post-test and questionnaire. The evaluation's findings revealed that participants' skills had improved when learning support hardware and instructional videos were introduced.
Co-Authors Adani, Rafi Malik Ade Kurniawan Adinda Chilliya Basuki Adinugroho, Sigit Adiyasa, Bhisma Afrizal Rivaldi Agi Putra Kharisma, Agi Putra Agus Wahyu Widodo Ahmad Fauzi Ahsani Akhmad Sa&#039;rony Al Farisi, Faiz Aulia Al Huda, Fais Albert Bill Alroy Alimah Nur Laili Allysa Apsarini Shafhah Alqis Rausanfita Alvandi Fadhil Sabily Amaliah, Ichlasuning Diah Amar Ikhbat Nurulrachman Ananda Fitri Niasita Anang Hanafi Andina Dyanti Putri Andre Rino Prasetyo Anggraheni, Hanna Shafira Ani Budi Astuti Annisa Alifia Annisa, Zahra Asma Arsya Monica Pravina Aulia Jasmin Safira Aulia Rahma Hidayat Avisena Abdillah Alwi Azhar, Naziha Baliyamalkan, Mohammad Nafi' Barbara Sonya Hutagaol Bayu Andika Paripih Bayu Rahayudi Bryan Pratama Jocom Budi Darma Budi Darma Setiawan Candra Dewi Candra Dewi Dahnial Syauqy Daisy Kurniawaty Danang Aditya Wicaksana Dayinta Warih Wulandari Deri Hendra Binawan Dhanika Jeihan Aguinta Dheby Tata Artha Dian Eka Ratnawati Dika Perdana Sinaga Dimas Fachrurrozi Azam Dwi Suci Ariska Yanti Dwi Wahyu Puji Lestari Dyva Pandhu Adwandha Edy Santosa Eka Dewi Lukmana Sari Elmira Faustina Achmal Evilia Nur Harsanti Faiz Aulia Al Farisi Farid Rahmat Hartono Fattah, Rafi Indra Fayza Sakina Maghfira Darmawan Febriarta, Renaldy Dwisma Ferdi Alvianda Ferly Gunawan Ferly Gunawan Firdaus, Agung Firmansyah, Ilham Fitra Abdurrachman Bachtiar Franklid Gunawan Galih Nuring Bagaskoro George Alexander Suwito Gilang Widianto Aldiansyah Glenn Jonathan Satria Guedho Augnifico Mahardika Haekal, Firhan Imam Hanson Siagian Hendra Pratama Budianto Hernawan, Yurdha Fadhila Hibatullah, Farras Husain Husein Abdulbar Ichsan Achmad Fauzi Ika Oktaviandita Imam Cholisoddin Imam Cholissodin Imam Ghozali Imanuel Juventius Todo Gurning Indah Mutia Ayudita Indriati Indriati Indriati Indriya Dewi Onantya Ivan Fadilla Ivan Ivan Jesika Silviana Situmorang Jojor Jennifer BR Sianipar Jonathan Reynaldo Junda Alfiah Zulqornain Karina Widyawati Karunia Ayuningsih Katherine Ivana Ruslim Khalisma Frinta Krishnanti Dewi Laila Restu Setiya Wati Lailil Muflikhah Laksono Trisnantoro Lubis, Saiful Wardi Lusiyana Adetia Isadi Luthfi Mahendra M. Aasya Aldin Islamy M. Ali Fauzi Maghfiroh, Sofita Hidayatul Makrina Christy Ariestyani Marina Debora Rindengan Maya Novita Putri Riyanto Mayang Arinda Yudantiar Mayang Panca Rini Melati Ayuning Lestari Moch. Khabibul Karim Moh. Dafa Wardana Mohammad Fahmi Ilmi Mohammad Toriq Muh. Arif Rahman Muhammad Faiz Al-Hadiid Muhammad Fajriansyah Muhammad Iqbal Pratama Muhammad Nurhuda Rusardi Muhammad Rizaldi Muhammad Rizky Setiawan Muhammad Tanzil Furqon Muhammad Taufan Muthia Azzahra Nadhif Sanggara Fathullah Nadia Siburian Nanda Agung Putra Nanda Cahyo Wirawan Naufal Akbar Eginda Naziha Azhar Niluh Putu Vania Dyah Saraswati Novan Dimas Pratama Novanto Yudistira Nur Hijriani Ayuning Sari Nurul Hidayat Panjaitan, Mutiharis Dauber Panji Husni Padhila Pengkuh Aditya Prana Prais Sarah Kayaningtias Prakoso, Andriko Fajar Pretty Natalia Hutapea Putri Rahma Iriani Radita Noer Pratiwi Rahma Chairunnisa Raissa Arniantya Randy Cahya Wihandika Randy Cahya Wihandika Randy Ramadhan Ravindra Rahman, Azka Renata Rizki Rafi` Athallah Renaza Afidianti Nandini Restu Amara Rezky Dermawan Rhevitta Widyaning Palupi Ridho Agung Gumelar Riza Cahyani Rizal Maulana, Rizal Rizal Setya Perdana Rizal Setya Perdana Rosy Indah Permatasari Sagala, Revaldo Gemino Kantana Salsabila Insani Salsabila Rahma Yustihan San Sayidul Akdam Augusta Santoso, Nurudin Sigit Adinugroho Sigit Adinugroho Silaban, Gilbert Samuel Nicholas Silvia Ikmalia Fernanda Sindy Erika Br Ginting Sri Indrayani, Sri Sutrisno Sutrisno Tania Malik Iryana Taufan Nugraha Thariq Muhammad Firdausy Tibyani Tibyani Tirana Noor Fatyanosa, Tirana Noor Uke Rahma Hidayah Utaminingrum, Fitri Vergy Ayu Kusumadewi Vinesia Yolanda Vivin Vidia Nurdiansyah Wijanarko, Rizqi Yerry Anggoro Yohana Yunita Putri Yoseansi Mantharora Siahaan Yosua Dwi Amerta Yuita Arum Sari Yuita Arum Sari Yuita Arum Sari Yulia Kurniawati Yurdha Fadhila Hernawan Yure Firdaus Arifin Zahra Asma Annisa