Jurnal Teknik ITS
Vol 1, No 1 (2012)

Peramalan Beban Listrik Jangka Pendek Menggunakan Optimally Pruned Extreme Learning Machine (OPELM) pada Sistem Kelistrikan Jawa Timur

Januar Adi Perdana (Teknik Elektro ITS Surabaya)
Adi Soeprijanto (Teknik Elektro ITS Surabaya)
Rony Seto Wibowo (Teknik Elektro ITS Surabaya)



Article Info

Publish Date
13 Sep 2012

Abstract

Peramalan beban listrik jangka pendek merupakan faktor yang sangat penting dalam perencanaan dan pengoperasian sistem tenaga listrik. Tujuan dari peramalan beban listrik adalah agar permintaan listrik dan penyediaan listrik dapat seimbang. Karakteristik beban di wilayah Jawa Timur sangat fluktuatif sehingga pada penelitian ini digunakan metode Optimally Pruned Extreme Learning Machine (OPELM) untuk meramalkan beban listrik. Kelebihan OPELM ada pada learning speed yang cepat dan pemilihan model yang tepat meskipun datanya mempunyai pola non linier. Keakuratan metode OPELM dapat diketahui dengan menggunakan metode pembanding yaitu metode ELM. Kriteria keakuratan yang digunakan adalah MAPE. Hasil dari perbandingan kriteria keakuratan menunjukkan bahwa hasil peramalan OPELM lebih baik dari ELM. Error rata-rata hasil pengujian peramalan paling minimum menunjukkan MAPE sebesar 1,3579% terjadi pada peramalan hari Jumat, sementara pada hari yang sama dengan metode ELM menghasilkan MAPE sebesar 2,2179%.

Copyrights © 2012






Journal Info

Abbrev

teknik

Publisher

Subject

Engineering

Description

Jurnal Teknik ITS merupakan publikasi ilmiah berkala yang diperuntukkan bagi mahasiswa ITS yang hendak mempublikasikan hasil Tugas Akhir-nya dalam bentuk studi literatur, penelitian, dan pengembangan teknologi. Jurnal ini pertama kali terbit pada September 2012, dimana setiap tahunnya diterbitkan 1 ...