IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 8, No 3: September 2019

Killer whale-backpropagation (KW-BP) algorithm for accuracy improvement of neural network forecasting models on energyefficient data

Saadi Bin Ahmad Kamaruddin (HELP University)
Nor Azura Md Ghani (Universiti Teknologi MARA)
Hazrita Ab Rahim (HELP University)
Ismail Musirin (Universiti Teknologi MARA)



Article Info

Publish Date
01 Sep 2019

Abstract

Green technology building is not newly introduced to the world nor Malaysia, but it is rarely practiced globally and now it has promoted noteworthy due to destructions caused by human hands towards the nature. Now people started to realize that the world is polluted by many hazardous substances. Therefore, Help University came up with the effort of preserving the nature through a new Green Technology campus, which has been fully operated since year 2017. In this research, neural network forecasting models on energy-efficient data of Help University, Subang 2 green technology campus at Subang Bistari, Selangor has been done with respect to value-formoney (VFM) attribute. Previously there were no similar research done on energy-efficient data of Help University, Subang 2 campus. The significant factors with respect to energy or electricity saved (MW/hr) in the year 2017 variable were studied as recorded by Building Automation and Control System (BAS) of Help University Subang 2 campus. Using multiple linear regression (stepwise method), the significant predictor towards energy saved (MW/hr) was Building Energy Index (BEI) (kWh/m2/year) based p-value<α=0.05. A mathematical model was developed. Moreover, the proposed neural network forecasting model using Killer WhaleBackpropagation Algorithm (KWBP) were found to better than existing conventional techniques to forecast BEI data. This research is expected to specifically assist maintenance department of Help University, Subang 2 campus towards load forecasting for power saving planning in years to come.

Copyrights © 2019






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...