Saadi Bin Ahmad Kamaruddin
HELP University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Killer whale-backpropagation (KW-BP) algorithm for accuracy improvement of neural network forecasting models on energyefficient data Saadi Bin Ahmad Kamaruddin; Nor Azura Md Ghani; Hazrita Ab Rahim; Ismail Musirin
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (744.842 KB) | DOI: 10.11591/ijai.v8.i3.pp270-277

Abstract

Green technology building is not newly introduced to the world nor Malaysia, but it is rarely practiced globally and now it has promoted noteworthy due to destructions caused by human hands towards the nature. Now people started to realize that the world is polluted by many hazardous substances. Therefore, Help University came up with the effort of preserving the nature through a new Green Technology campus, which has been fully operated since year 2017. In this research, neural network forecasting models on energy-efficient data of Help University, Subang 2 green technology campus at Subang Bistari, Selangor has been done with respect to value-formoney (VFM) attribute. Previously there were no similar research done on energy-efficient data of Help University, Subang 2 campus. The significant factors with respect to energy or electricity saved (MW/hr) in the year 2017 variable were studied as recorded by Building Automation and Control System (BAS) of Help University Subang 2 campus. Using multiple linear regression (stepwise method), the significant predictor towards energy saved (MW/hr) was Building Energy Index (BEI) (kWh/m2/year) based p-value<α=0.05. A mathematical model was developed. Moreover, the proposed neural network forecasting model using Killer WhaleBackpropagation Algorithm (KWBP) were found to better than existing conventional techniques to forecast BEI data. This research is expected to specifically assist maintenance department of Help University, Subang 2 campus towards load forecasting for power saving planning in years to come.