BIMASTER
Vol 8, No 4 (2019): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya

RUANG FUNGSI L^2 SEBAGAI RUANG HILBERT

Ade Rismayanti (Universitas Tanjungpura)
Mariatul Kiftiah (Universitas Tanjungpura)
Helmi Helmi (Universitas Tanjungpura)



Article Info

Publish Date
10 Oct 2019

Abstract

Ruang vektor yang dilengkapi dengan aksioma inner product disebut ruang inner product (pre-Hilbert). Ruang pre-Hilbert dikatakan lengkap jika setiap barisan Cauchy di dalamnya konvergen. Ruang pre-Hilbert yang lengkap adalah ruang Hilbert. Diberikan ruang fungsi   L^2 adalah himpunan semua fungsi bernilai kompleks yang mempunyai integral mutlak kuadrat berhingga  dan  merupakan suatu ruang vektor. Ruang fungsi L^2 yang dilengkapi inner product  membentuk ruang pre-Hilbert. Dalam penelitian ini ditunjukkan bahwa ruang fungsi  tersebut merupakan ruang Hilbert. Dari sifat kelengkapan dapat ditunjukkan setiap barisan Cauchy  di dalam ruang fungsi  konvergen maka ruang fungsi merupakan  ruang Hilbert.Kata kunci: Pre-Hilbert, Hilbert, ruang fungsi .

Copyrights © 2019






Journal Info

Abbrev

jbmstr

Publisher

Subject

Decision Sciences, Operations Research & Management Mathematics

Description

Bimaster adalah Jurnal Ilmiah berkala bidang Matematika, Statistika dan Terapannya yang terbit secara online dan dikelola oleh Jurusan Matematika FMIPA ...