JURNAL REKAYASA TEKNOLOGI INFORMASI
Vol 3, No 2 (2019): Jurnal Rekayasa Teknologi Informasi (JURTI)

KNN vs Naive Bayes Untuk Deteksi Dini Putus Kuliah Pada Profil Akademik Mahasiswa

Vina Zahrotun Kamila (Mulawarman University)
Eko Subastian (Mulawarman University)



Article Info

Publish Date
14 Dec 2019

Abstract

Penelitian ini membahas bagaimana perbandingan KNN dan Naive Bayes dalam memprediksi potensi putus kuliah pada mahasiswa. Data yang dijadikan variabel independen adalah data akademik yaitu nilai semester 1 hingga 6. Hasil dari penelitian ini diharapkan menjadi pedoman dalam menerapkan algoritma ke dalam sistem deteksi dini putus kuliah. Algoritma-algoritma ini diterapkan dengan library Scikit-learn pada Python. Nilai akurasi yang dihasilkan dari penelitian ini menunjukkan Naive Bayes (92%) lebih unggul dalam memprediksi status putus kuliah mahasiswa dibandingkan dengan algoritma KNN (85%). Namun perlu dilakukan penelitian lanjutan lagiuntuk menguji konsistensi dan akurasi pada data yang lebih besar dan lebih beragam.

Copyrights © 2019






Journal Info

Abbrev

INF

Publisher

Subject

Computer Science & IT

Description

Jurnal Rekayasa Teknologi Informasi (JURTI) Merupakan sarana bagi peneliti di bidang informatika untuk mempublikasikan karya-karya penelitiannya. Dengan periode terbit setahun dua kali pada bulan Juni dan Desember. Bernaung di bawah Jurusan Teknologi Informasi dan Komunikasi (TIK) Fakultas Ilmu ...