International Journal of Electrical and Computer Engineering
Vol 10, No 6: December 2020

Physical layer security and energy efficiency over different error correcting codes in wireless sensor networks

Mohammed Ahmed Magzoub (Multimedia University)
Azlan Abd Aziz (Multimedia University)
Mohammed Ahmed Salem (Multimedia University)
Hadhrami Ab Ghani (Multimedia University)
Azlina Abdul Aziz (Multimedia University)
Azwan Mahmud (Multimedia University)



Article Info

Publish Date
01 Dec 2020

Abstract

Despite the rapid growth in the market demanding for wireless sensor networks (WSNs), they are far from being secured or efficient. WSNs are vulnerable to malicious attacks and utilize too much power. At the same time, there is a significant increment of the security threats due to the growth of the several applications that employ wireless sensor networks. Therefore, introducing physical layer security is considered to be a promising solution to mitigate the threats. This paper evaluates popular coding techniques like Reed solomon (RS) techniques and scrambled error correcting codes specifically in terms of security gap. The difference between the signal to nose ratio (SNR) of the eavesdropper and the legitimate receiver nodes is defined as the security gap. We investigate the security gap, energy efficiency, and bit error rate between RS and scrambled t-error correcting codes for wireless sensor networks. Lastly, energy efficiency in RS and Bose-Chaudhuri-Hocquenghem (BCH) is also studied. The results of the simulation emphasize that RS technique achieves similar security gap as scrambled error correcting codes. However, the analysis concludes that the computational complexities of the RS is less compared to the scrambled error correcting codes. We also found that BCH code is more energy-efficient than RS.

Copyrights © 2020






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...