Hadhrami Ab Ghani
Multimedia University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Physical layer security and energy efficiency over different error correcting codes in wireless sensor networks Mohammed Ahmed Magzoub; Azlan Abd Aziz; Mohammed Ahmed Salem; Hadhrami Ab Ghani; Azlina Abdul Aziz; Azwan Mahmud
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6673-6681

Abstract

Despite the rapid growth in the market demanding for wireless sensor networks (WSNs), they are far from being secured or efficient. WSNs are vulnerable to malicious attacks and utilize too much power. At the same time, there is a significant increment of the security threats due to the growth of the several applications that employ wireless sensor networks. Therefore, introducing physical layer security is considered to be a promising solution to mitigate the threats. This paper evaluates popular coding techniques like Reed solomon (RS) techniques and scrambled error correcting codes specifically in terms of security gap. The difference between the signal to nose ratio (SNR) of the eavesdropper and the legitimate receiver nodes is defined as the security gap. We investigate the security gap, energy efficiency, and bit error rate between RS and scrambled t-error correcting codes for wireless sensor networks. Lastly, energy efficiency in RS and Bose-Chaudhuri-Hocquenghem (BCH) is also studied. The results of the simulation emphasize that RS technique achieves similar security gap as scrambled error correcting codes. However, the analysis concludes that the computational complexities of the RS is less compared to the scrambled error correcting codes. We also found that BCH code is more energy-efficient than RS.
A review on sparse fast fourier transform applications in image processing Hadhrami Ab Ghani; Mohamad Razwan Abdul Malek; Muhammad Fadzli Kamarul Azmi; Muhammad Jefri Muril; Azizul Azizan
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.187 KB) | DOI: 10.11591/ijece.v10i2.pp1346-1351

Abstract

Fast Fourier Transform has long been established as an essential tool in signal processing. To address the computational issues while helping the analysis work for multi-dimensional signals in image processing, sparse Fast Fourier Transform model is reviewed here when applied in different applications such as lithography optimization, cancer detection, evolutionary arts and wasterwater treatment. As the demand for higher dimensional signals in various applications especially multimedia appplications, the need for sparse Fast Fourier Transform grows higher.