Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 4 No 3 (2020): Maret 2020

Analisis Sentimen Mengenai Produk Toyota Avanza Menggunakan Metode Learning Vector Quantization Versi 3 (LVQ 3) dengan Seleksi Fitur Chi Square, Lexicon-Based Features serta Normalisasi Min-Max

Jonathan Reynaldo (Fakultas Ilmu Komputer, Universitas Brawijaya)
Putra Pandu Adikara (Fakultas Ilmu Komputer, Universitas Brawijaya)
Randy Cahya Wihandika (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
05 Jun 2020

Abstract

Car is a means of transportation used by peoples with some excellence and comfort values for better driving experience. Toyota as the manufacturer of Toyota Avanza needs people's opinions to upgrade their products. Opinions from social media need to be classified as positive, neutral or negative opinions so sentiment analysis is needed. For analyzing a sentiment, Learning Vector Quantization 3 (LVQ 3) is used in this research. Chi Square feature selection, lexicon-based features and min-max normalization are used in this research too. Evaluation using confusion matrix with 240 training data and 60 testing data results the accuracy of 38,33% using features from Chi Square feature selection, 33,33% using lexicon-based features, and 36,67% using both of Chi Square feature selection and lexicon-based features.

Copyrights © 2020






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...