BAREKENG: Jurnal Ilmu Matematika dan Terapan
Vol 10 No 2 (2016): BAREKENG: Jurnal Ilmu Matematika dan Terapan

PREDIKSI PENGGUNAAN BANDWIDTH MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK

Radjabaycolle, Jefri (Unknown)
Pulungan, Reza (Unknown)



Article Info

Publish Date
01 Dec 2016

Abstract

Jaringan Syaraf Tiruan (JST) sering dipakai dalam menyelesaikan permasalahan tertentu seperti prediksi, klasifikasi, dan pengolahan data. Berdasarkan hal tersebut, dalam penelitian ini mencoba menerapkan JST untuk menangani permasalahan dalam prediksi penggunaan bandwidth. Sistem yang dikembangkan dapat digunakan untuk memprediksi pengunaan bandwidth dengan menerapkan Elman Recurrent Neural Network (ERNN). Struktur Elman dipilih karena dapat membuat iterasi jauh lebih cepat sehingga memudahkan proses konvergensi.. Vektor input yang digunakan menggunakan windows size. Hasil penelitian dengan menggunakan target error sebesar 0.001 menunjukkan nilai MSE terkecil yaitu pada windows size 11 dengan nilai 0.002833. Kemudian dengan menggunakan 13 neuron pada hidden layer diperoleh nilai error paling optimal (minimum error) sebesar 0.003725.

Copyrights © 2016






Journal Info

Abbrev

barekeng

Publisher

Subject

Computer Science & IT Control & Systems Engineering Economics, Econometrics & Finance Energy Engineering Mathematics Mechanical Engineering Physics Transportation

Description

BAREKENG: Jurnal ilmu Matematika dan Terapan is one of the scientific publication media, which publish the article related to the result of research or study in the field of Pure Mathematics and Applied Mathematics. Focus and scope of BAREKENG: Jurnal ilmu Matematika dan Terapan, as follows: - Pure ...