agriTECH
Vol 38, No 4 (2018)

Desain Sensor Suhu dan Kelengasan Tanah untuk Sistem Kendali Budidaya Tanaman Cabai (Capsicum annuum L.)

Sugeng Triyono (Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung, Jl Soemantri Brojonegoro, No 1, Bandar Lampung 35141)
Mareli Telaumbanua (Teknik Pertanian, Fakultas Pertanian, Universitas Lampung, Indonesia)
Yessi Mulyani (Jurusan Teknik Informatika, Fakultas Teknik, Universitas Lampung, Jl Soemantri Brojonegoro, No 1, Bandar Lampung 35141)
Titin Yulianti (Jurusan Teknik Informatika, Fakultas Teknik, Universitas Lampung, Jl Soemantri Brojonegoro, No 1, Bandar Lampung 35141)
Muhammad Amin (Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung, Jl Soemantri Brojonegoro, No 1, Bandar Lampung 35141)
Agus Haryanto (Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung, Jl Soemantri Brojonegoro, No 1, Bandar Lampung 35141)



Article Info

Publish Date
22 Jul 2019

Abstract

Cultivation crop is influenced by soil, water, climate, and crop properties. Air temperature is one of climate parameters which is considered for plant growing. Soil moisture represents soil and water factors and it generally plays an important role in crop cultivation. A crop requires soil moisture and air temperature for an optimum growth. a control system is proposed to create an optimum air temperature and soil moisture to support plant growth. The aim of this study was to design a precision measurement instrument, a control system that is able to control microclimate (air temperature and soil moisture) for optimal growth of chili (Capsicum annuum L.) crops. A design of environmental control was applied by using sensors for air temperature and soil moisture. Microcontrollers were connected to sensors with the water pump actuator and the irrigation pump through a relay module and a TIP122 transistor. The accuracy of DHT 22 temperature sensors and soil moisture sensors were calculated based on the approximate coefficient of determination, and the total errors of each sensor. The actuator performance in this design included the response rates and the duration of the working time. The performance tests were conducted 3 times without using chili plants. The coefficient of determination (R²) of temperature sensor 1, temperature sensor 2 and temperature sensor 3 were 0.999, 0.999, and 0.999, respectively. The total errors of the three sensors were -0.071 ºC, -0.085 ºC, and 0.014ºC, respectively. The coefficient of determination (R ²) of the soil moisture sensor 1, the soil moisture sensor 2, and the soil moisture sensor were 0.888, 0.8401, and 0.8963, respectively. The mean total errors for these three types of ranging sensors were -0.2204%, -0.0952% and -2.8049%, respectively.

Copyrights © 2018






Journal Info

Abbrev

agritech

Publisher

Subject

Agriculture, Biological Sciences & Forestry

Description

Agritech with registered number ISSN 0216-0455 (print) and ISSN 2527-3825 (online) is a scientific journal that publishes the results of research in the field of food and agricultural product technology, agricultural and bio-system engineering, and agroindustrial technology. This journal is ...