Misalkan G=(V,E) adalah suatu graf dan k adalah suatu bilangan bulat positif. Pelabelan-k total pada G adalah suatu pemetaaan f: V U E?{1,2,...,k}. Bobot titik t dinyatakan dengan wf(t)=f(t)+?ut element E(G)f(ut) dan bobot sisi ut dinyatakan dengan wf(t)=f(u)+f(ut)+f(t). Suatu pelabelan-k total pada G dikatakan tak teratur total, jika bobot setiap titik berbeda dan bobot setiap sisi berbeda. Nilai k terkecil sehingga suatu graf G memiliki pelabelan-k total tak teratur total disebut nilai ketakteraturan total dari G, dinotasikan dengan ts(G). Pada penelitian ini, ditentukan nilai ketakteraturan total dari lima copy graf bintang 5Sn, dengan n adalah bilangan bulat positif dan n?3. [Let G=(V,E) be a graph and k is a positive integer, total k-labelling on G is a mapping f: V U E?{1,2,...,k}. The weight of the vertex t is defined by wf(t)=f(t)+?ut element E(G)f(ut) and the weight of the edge ut is defined by wf(t)=f(u)+f(ut)+f(t). A total k-labeling of G is called a totally irregular total labeling, if the weight of every two distinct vertices are different and the weight of every two distinct edges are different. The minimum k such that a graph G has a totally irregular total k-labeling of G is called the total irregularity strength of G, denoted by ts(G). In this research determined total irregularity strength of five copies of star graph 5Sn, where n is a positive integer and n?3]
Copyrights © 2020