Jurnal Informatika Universitas Pamulang
Vol 5, No 4 (2020): JURNAL INFORMATIKA UNIVERSITAS PAMULANG

Analisis Perbandingan Model Matrix Factorization dan K-Nearest Neighbor dalam Mesin Rekomendasi Collaborative Berbasis Prediksi Rating

Prayogo, Janny Eka (Unknown)
Suharso, Aries (Unknown)
Rizal, Adhi (Unknown)



Article Info

Publish Date
31 Dec 2020

Abstract

Rating is a form of assessment of the likes or dislikes of a user or customer for an item. Where the higher the rating number given, the item is preferred by customers or users. In the recommendation engine, a set of ratings can be predicted and used as an object to generate a recommendation by the Collaborative Filtering method. In the Collaborative Filtering method, there is a rating prediction model, namely the Matrix Factorization and K-Nearest Neighbor models. This study analyzes the comparison of the two prediction models based on the value of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the prediction results generated using the movielens film rating dataset. From the analysis and testing results, it was found that MAE = 0.6371 and RMSE = 0.8305 for the Matrix Factorization model, while MAE = 0.6742 and RMSE = 0.8863 for the K-Nearest Neighbor model. The best model is Matrix Factorization because the MAE and RMSE values are lower than the K-Nearest Neighbor model and have the closest predicted rating results from the original rating value.

Copyrights © 2020






Journal Info

Abbrev

informatika

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika Universitas Pamulang is a periodical scientific journal that contains research results in the field of computer science from all aspects of theory, practice and application. Papers can be in the form of technical papers or surveys of recent developments research ...