Jurnal Sistem Cerdas
Vol. 3 No. 2 (2020): Riset dan Inovasi Sistem Cerdas pada Penanggulangan Wabah Covid-19

Studi Komparasi Algoritma Klasifikasi Mental Workload Berdasarkan Sinyal EEG

Dessy Kusumaningrum (Universitas Negeri Surabaya)
Elly Matul Imah (Universitas Negeri Surabaya)



Article Info

Publish Date
31 Aug 2020

Abstract

Kondisi psikologis dan fisik manusia dapat memengaruhi proses berpikir. Apabila kondisi individu mengalami kelelahan, maka dapat memengaruhi penurunan tingkat produktivitas maupun penurunan proses berpikir yang menyebabkan timbulnya mental workload. Workload yang dimiliki harus seimbang terhadap kemampuan dan keterbatasan yang dimiliki. Mental workload yang berlebih berdampak buruk bagi individu karena menimbulkan penurunan produktivitas kerja. Perangkat khusus yang dapat digunakan untuk mengetahui tingkat mental workload seorang individu adalah Electroencephalogram (EEG). EEG adalah perangkat khusus yang digunakan untuk mengukur sinyal potensi listrik dari otak. Dataset yang digunakan dalam penelitian ini adalah STEW: Simultaneous Task EEG Dataset dengan 45 subjek. Dalam penelitian ini, telah dilakukan studi komparasi algoritma Random Forest, K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), dan Support Vector Machine (SVM) untuk klasifikasi mental workload berdasarkan sinyal EEG. Studi dilakukan untuk menentukan algoritma terbaik dalam klasifikasi dilihat dari segi nilai akurasi dan penggunaan memori saat proses klasifikasi. Dataset telah melalui beberapa tahapan, diantaranya pra-pemrosesan data, ekstraksi fitur, dan proses klasifikasi. Pra-pemrosesan data menerapkan pembagian data menjadi beberapa chunk. Untuk mendapatkan ciri dalam ekstraksi fitur, diterapkan metode Principal Component Analysis (PCA). Pada proses klasifikasi menggunakan pendekatan k-fold cross validation. Hasil studi penelitian ini adalah algoritma terbaik dari sisi akurasi adalah algoritma KNN, algoritma terbaik dari sisi waktu pembuatan model adalah algoritma Random Forest, serta algoritma terbaik dari sisi penggunaan memori adalah algoritma MLP.

Copyrights © 2020






Journal Info

Abbrev

jsc

Publisher

Subject

Automotive Engineering Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering

Description

Jurnal Sistem Cerdas dengan eISSN : 2622-8254 adalah media publikasi hasil penelitian yang mendukung penelitian dan pengembangan kota, desa, sektor dan kesistemam lainnya. Jurnal ini diterbitkan oleh Asosiasi Prakarsa Indonesia Cerdas (APIC) dan terbit setiap empat bulan ...