Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 4 No 9 (2020): September 2020

Klasifikasi Dokumen Pengaduan Sambat Online menggunakan Metode Multinomial Naive Bayes dan N-Gram

Feri Angga Saputra (Fakultas Ilmu Komputer, Universitas Brawijaya)
Indriati Indriati (Fakultas Ilmu Komputer, Universitas Brawijaya)
Candra Dewi (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
17 Sep 2020

Abstract

In an effort to utilize technology in public services, the Malang Office of Communication and Information has launched the SAMBAT Online web application (Integrated Questions Society Application System) to accommodate criticism, suggestions, and complaints given by the public. To improve time efficiency and make it easier for admins to classify incoming complaints the text classification method is needed. The Naive Bayes Multinomial method is widely used because this algorithm is very simple and efficient. But the Naive Bayes Multinomial algorithm has the disadvantage of having dependence on the amount of data. To improve these deficiencies researchers used a support method as feature extraction, N-gram. The test results using the Multinomial Naive Bayes method and N-gram show that the unigram n-gram can provide the highest accuracy rate of 88.23% with an average overall accuracy of 80.88% with an f-measure value of 0,8013.

Copyrights © 2020






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...