Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 5 No 6 (2021): Juni 2021

Klasifikasi Aritmia Dari Hasil Elektrokardiogram Menggunakan Metode Support Vector Machine

Qurrata Ayuni (Fakultas Ilmu Komputer, Universitas Brawijaya)
Randy Cahya Wihandika (Fakultas Ilmu Komputer, Universitas Brawijaya)
Novanto Yudistira (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
20 May 2021

Abstract

Arrhythmia (heart rhythm disorder) is a disorder of the cardiac elektrophysology caused by disruption of the conduction system as well as impaired formation and delivery of electrical impulses. Some factors that influence arrhythmia include age, blood pressure, height and weight. This arrhythmia can be recognized by using a cardiac record or electrocardiogram (ECG). Numerical data generated by ECG has many features that are not easily processed manually. Computer assistance with certain machine learning techniques can be used to automatically recognize diseases. One method of machine learning is support vector machine (SVM). In this study, a system was designed to classify arrhythmias using support vector machine (SVM) methods. The most optimal accuracy value or accuracy that has the highest value indicates that the system is in accordance with expectations, so that the support vector machine method is able to measure the accuracy of the classification of arrhythmias based on electrocardiogram results with RBF kernel function of 92%.

Copyrights © 2021






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...