TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 19, No 2: April 2021

Adopting explicit and implicit social relations by SVD++ for recommendation system improvement

Mohsin Hasan Hussein (University of Kerbala)
Akeel Abdulkareem Alsakaa (University of Kerbala)
Haydar A. Marhoon (University of Kerbala)



Article Info

Publish Date
01 Apr 2021

Abstract

Recommender systems suffer a set of drawbacks such as sparsity. Social relations provide a useful source to overcome the sparsity problem. Previous studies have utilized social relations or rating feedback sources. However, they ignored integrating these sources. In this paper, the limitations of previous studies are overcome by exploiting four sources of information, namely: explicit social relationships, implicit social relationships, users’ ratings, and implicit feedback information. Firstly, implicit social relationships are extracted through the source allocation index algorithm to establish new relations among users. Secondly, the similarity method is applied to find the similarity between each pair of users who have explicit or implicit social relations. Then, users’ ratings and implicit rating feedback sources are extracted via a user-item matrix. Furthermore, all sources are integrated into the singular value decomposition plus (SVD++) method. Finally, missing predictions are computed. The proposed method is implemented on three real-world datasets: Last.Fm, FilmTrust, and Ciao. Experimental results reveal that the proposed model is superior to other studies such as SVD, SVD++, EU-SVD++, SocReg, and EISR in terms of accuracy, where the improvement of the proposed method is about 0.03% for MAE and 0.01% for RMSE when dimension value (d) = 10.

Copyrights © 2021






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...