Akeel Abdulkareem Alsakaa
University of Kerbala

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Adopting explicit and implicit social relations by SVD++ for recommendation system improvement Mohsin Hasan Hussein; Akeel Abdulkareem Alsakaa; Haydar A. Marhoon
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 2: April 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i2.18149

Abstract

Recommender systems suffer a set of drawbacks such as sparsity. Social relations provide a useful source to overcome the sparsity problem. Previous studies have utilized social relations or rating feedback sources. However, they ignored integrating these sources. In this paper, the limitations of previous studies are overcome by exploiting four sources of information, namely: explicit social relationships, implicit social relationships, users’ ratings, and implicit feedback information. Firstly, implicit social relationships are extracted through the source allocation index algorithm to establish new relations among users. Secondly, the similarity method is applied to find the similarity between each pair of users who have explicit or implicit social relations. Then, users’ ratings and implicit rating feedback sources are extracted via a user-item matrix. Furthermore, all sources are integrated into the singular value decomposition plus (SVD++) method. Finally, missing predictions are computed. The proposed method is implemented on three real-world datasets: Last.Fm, FilmTrust, and Ciao. Experimental results reveal that the proposed model is superior to other studies such as SVD, SVD++, EU-SVD++, SocReg, and EISR in terms of accuracy, where the improvement of the proposed method is about 0.03% for MAE and 0.01% for RMSE when dimension value (d) = 10.
Effective electroencephalogram based epileptic seizure detection using support vector machine and statistical moment’s features Akeel Abdulkareem Alsakaa; Mohsin Hasan Hussein; Zaid Hasan Nasralla; Hazim Alsaqaa; Kesra Nermend; Anna Borawska
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp5204-5213

Abstract

Epilepsy is one of the widespread disorders. It is a noncommunicable disease that affects the human nerve system. Seizures are abnormal patterns of behavior in the electricity of the brain which produce symptoms like losing consciousness, attention or convulsions in the whole body. This paper demonstrates an effective electroencephalogram (EEG) based seizure detection method using discrete wavelet transformation (DWT) for signal decomposition to extract features. An automatic channel selection method was proposed by the researcher to select the best channel from 23 channels based on maximum variance value. The records were segmented into a nonoverlapping segment with long 1-S. The support vector machine (SVM) model was used to automatically detect segments that contain seizures, using both frequency and time domain statistical moment features. The experimental result was obtained from 24 patients in CHB-MIT database. The average accuracy is 94.1, sensitivity is 93.5, specificity is 94.6 and the false positive rate average is 0.054.