Abstrak – Algoritma klasifikasi pada text mining banyak digunakan untuk meningkatkan akurasi dalam pengkajian klasifikasi ulasan positif dan negatif pada review restoran, salah satunya adalah Naive Bayes Classifier, Naive Bayes Classifier dalam peningkatan nilai akurasi tinggi tetapi Naive Bayes Classifier lemah dalam pemilihan atribut. Penelitian ini menguraikan langkah-langkah menggunakan Particle Swarm Optimization untuk menseleksi atribut sehingga keakuratan Naive Bayes Classifier menjadi lebih akurat. Evaluasi dilakukan menggunakan 10 fold cross validation. Hasil penelitian menunjukkan peningkatan nilai akurasi sebesar 17,5% untuk algoritma Naive Bayes Classifier diperoleh hasil yaitu 71,00% menjadi 88,50% setelah penerapan seleksi atribut Particle Swarm Optimization.Kata kunci:  Analisa sentimen, Review, Restoran, Naive Bayes Classifier, Particle Swarm Optimization AbstractClassification algorithms in text mining are widely used to improve accuracy in assessing the classification of positive and negative reviews on restaurant reviews, one of which is Naive Bayes Classifier, Naive Bayes Classifier in increasing high accuracy values but Naive Bayes Classifier is weak in attribute selection. This study describes the steps of using Particle Swarm Optimization to select attributes so that the accuracy of the Naive Bayes Classifier is more accurate. Evaluation is done using 10 fold cross validation. The results showed an increase in the accuracy value of 17.5% for the Naive Bayes Classifier algorithm. The results were 71.00% to 88.50% after the application of Particle Swarm Optimization attribute selection.Keywords: Sentiment Analysis, Reviews, Restaurants, Naive Bayes Classifier, Particle Swarm Optimization
Copyrights © 2019