Automotive Experiences
Vol 4 No 2 (2021)

The Effects of Rice Husk Particles Size as A Reinforcement Component on Resin-Based Brake Pad Performance: From Literature Review on the Use of Agricultural Waste as A Reinforcement Material, Chemical Polymerization Reaction of Epoxy Resin, to Experiments

Asep Bayu Dani Nandiyanto (Universitas Pendidikan Indonesia, Indonesia)
Siti Nur Hofifah (Universitas Pendidikan Indonesia, Indonesia)
Gabriela Chelvina Santiuly Girsang (Universitas Pendidikan Indonesia, Indonesia)
Silmi Ridwan Putri (Universitas Pendidikan Indonesia, Indonesia)
Bentang Arief Budiman (Institut Teknologi Bandung, Indonesia)
Farid Triawan (Sampoerna University, Indonesia)
Abdulkareem Sh. Mahdi Al-Obaidi (Taylor’s University, Malaysia)



Article Info

Publish Date
24 May 2021

Abstract

This study aims to investigate the effect of rice husks’ particle size on resin-based brake pad performance (i.e. compressive strength, puncture strength, mass loss, wear rate, friction coefficient, and heat resistance). Bisphenol A-epichlorohydrin and cycloaliphatic amine were mixed to form resin and used as the brake pad's base material. In the experiment, rice husk with a specific particle size (i.e., 250, 500, dan 1000 μm) was added to the resin. Rice husk has received considerable interest due to its lignin, cellulose, and silica content, making it suitable as friction material due to its ceramic-like behavior. The experimental results showed small rice husk particles improved compressive strength, puncture strength, and bulk density. This can be obtained from the analysis of the maximum compressive strength for brake pad supported by particles with sizes of 250, 500, and 1000 μm having values of 0.238; 0.173; and 0.144 MPa, respectively. In contrast, large particles formed coarse surfaces and pores, decreased mass loss rate, and improve friction properties (i.e. wear rate, friction coefficient). The friction coefficient values of brake pad supported by particles with sizes of 250, 500, and 1000 µm were, respectively, 0.2075; 0.2070; and 0.3379. Particle size affected interpacking, interfacial bonding, pores number and size, thermal softening, mechanical properties, and friction properties of the brake pad. Comparison between the prepared resin-based and commercial brake pad was also done, confirming the utilization of agro-waste as a potential alternative for friction material in the brake pad.

Copyrights © 2021






Journal Info

Abbrev

AutomotiveExperiences

Publisher

Subject

Aerospace Engineering Automotive Engineering Chemical Engineering, Chemistry & Bioengineering Control & Systems Engineering Electrical & Electronics Engineering Energy Materials Science & Nanotechnology Mechanical Engineering

Description

Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical ...