Journal of Mechanical Design and Testing (JMDT)
Vol 1, No 2 (2019): Articles

Effect of Chromate Inhibitor on the Corrosion Rate of API 5L Grade B Steel Pipe in the Injection Water

Priyo Tri Iswanto (Departemen Teknik Mesin dan Industri Fakultas Teknik Universitas Gadjah Mada - Yogyakarta 55281, Indonesia Telp. (0274) 521673)
Ardian Shah (Departemen Teknik Mesin dan Industri Fakultas Teknik Universitas Gadjah Mada - Yogyakarta 55281, Indonesia Telp. (0274) 521673)
Hizba Muhammad Sadida (Departemen Teknik Mesin dan Industri Fakultas Teknik Universitas Gadjah Mada - Yogyakarta 55281, Indonesia Telp. (0274) 521673)



Article Info

Publish Date
31 Dec 2019

Abstract

Corrosion inside the injection water pipe occurs from the Central Injection Facility Station to the wellhead. One way to reduce the rate of corrosion is to add inhibitors. This research is looking for the effect of variations in the concentration of the sodium chromate inhibitor (Na2CrO4) on the corrosion rate of API 5L grade B pipes used in the oil industry, especially in injection water fluids. For comparison, a corrosion rate test was carried out on a 3.5% NaCl solution. The study used an NPS 4 SCH 40 pipe with an outer diameter of 4.5 in (114.3 mm) with a thickness of 0.237in (6.02mm). The concentration parameter of the Sodium Chromate inhibitor used is 0.1; 0.3; 0.5; 0.7 and 0.9%. The study used a corrosion rate test using the potentiodynamic polarization method. The results showed the pipe corrosion rate in the injection water fluid was 0.3307 mpy, and the pipe corrosion rate in the 3.5% NaCl solution was 0.4960 mpy. The addition of chromate inhibitors succeeded in decreasing the corrosion rate. The maximum condition is achieved with the addition of 0.9% inhibitor. In this condition, the corrosion rate of the pipe in the injection water solution is 0.2175 mpy and the corrosion rate of the pipe in the 3.5% NaCl solution is 0.3218 mpy.

Copyrights © 2019






Journal Info

Abbrev

jmdt

Publisher

Subject

Engineering Industrial & Manufacturing Engineering Mechanical Engineering

Description

Design of mechanical components used in engineering structures, machines and engines, computer aided design (CAD), computer aided manufacturing (CAM), the development of methodology for designing machine elements or mechanical components. Finite element analysis, computational fluid dynamics, ...