Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Vol 7 No 2: Mei 2018

Pemanfaatan Deep Learning pada Video Dash Cam untuk Deteksi Pengendara Sepeda Motor

Stephen Ekaputra Limantoro (Sekolah Tinggi Teknik Surabaya)
Yosi Kristian (Sekolah Tinggi Teknik Surabaya)
Devi Dwi Purwanto (Sekolah Tinggi Teknik Surabaya)



Article Info

Publish Date
07 Jun 2018

Abstract

The number of motorcyclists in Indonesia was 105.15 million in 2016. It made the Indonesian government difficult to monitor motorcyclists on the highways. Dash cam could be used as the alternative tool to detect motorcyclists when given the intelligence. One of the typical drawbacks in detecting objects is complex and varied feature. A convolutional neural networks (CNN) that was capable of detecting motorcyclists was proposed. CNN successfully classified the ship object with f1-score of 0.94. Sliding window and heat map were used in thispaper to search the localization and region of motorcyclists. Two experiments had been done in this paper. The goal of this paper was to set the best combination of CNN architecture and parameter. The first experiment consisted of three trained weights while the second experiment consisted of one trained weight. Weight peformances against test data in experiment 1 and experiment 2 were measured using f1-score of 0.977, 0.988, 0.989, and 0.986, respectively. From the experimental results using the sliding window, experiment 2 had a lower error rate to predict motorcyclists than experiment 1 because the training data on experiment 1 contained more and various images.

Copyrights © 2018






Journal Info

Abbrev

JNTETI

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Engineering

Description

Topics cover the fields of (but not limited to): 1. Information Technology: Software Engineering, Knowledge and Data Mining, Multimedia Technologies, Mobile Computing, Parallel/Distributed Computing, Artificial Intelligence, Computer Graphics, Virtual Reality 2. Power Systems: Power Generation, ...