BAREKENG: Jurnal Ilmu Matematika dan Terapan
Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications

OUTLIER DETECTION ON HIGH DIMENSIONAL DATA USING MINIMUM VECTOR VARIANCE (MVV)

A., Andi Harismahyanti (Unknown)
Indahwati, Indahwati (Unknown)
Fitrianto, Anwar (Unknown)
Erfiani, Erfiani (Unknown)



Article Info

Publish Date
01 Sep 2022

Abstract

High-dimensional data can occur in actual cases where the variable p is larger than the number of observations n. The problem that often occurs when adding data dimensions indicates that the data points will approach an outlier. Outliers are part of observations that do not follow the data distribution pattern and are located far from the data center. The existence of outliers needs to be detected because it can lead to deviations from the analysis results. One of the methods used to detect outliers is the Mahalanobis distance. To obtain a robust Mahalanobis distance, the Minimum Vector Variance (MVV) method is used. This study will compare the MVV method with the classical Mahalanobis distance method in detecting outliers in non-invasive blood glucose level data, both at p>n and n>p. The test results show that the MVV method is better for n>p. MVV shows more effective results in identifying the minimum data group and outlier data points than the classical method.

Copyrights © 2022






Journal Info

Abbrev

barekeng

Publisher

Subject

Computer Science & IT Control & Systems Engineering Economics, Econometrics & Finance Energy Engineering Mathematics Mechanical Engineering Physics Transportation

Description

BAREKENG: Jurnal ilmu Matematika dan Terapan is one of the scientific publication media, which publish the article related to the result of research or study in the field of Pure Mathematics and Applied Mathematics. Focus and scope of BAREKENG: Jurnal ilmu Matematika dan Terapan, as follows: - Pure ...