FARABI: Jurnal Matematika dan Pendidikan Matematika
Vol 5 No 2 (2022): FARABI

Penaksiran Parameter Distribusi Weibull Menggunakan Algoritma Genetika dan Particle Swarm Optimization

Sarah Ayatun Nufus (Universitas Sumatera Utara)
Sutarman Sutarman (Universitas Sumatera Utara)



Article Info

Publish Date
29 Sep 2022

Abstract

This study aims toestimate and compare the results of the estimated parameters of the Weibull distributionusing the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The Weibull distribution used is a two-parameter Weibull distribution and a three-parameterWeibull distribution. In the GA Algorithm, there are evolution operators such as crossover and mutation. Meanwhile, in PSO algorithm doesn’t. The evolution operators that can optimize complex problems and a very wide search space Evaluation of the two method is carried out by observing the difference in the resulting fitness values.Based on the simulation data from the estimator obtained using the R program, it is found that the two-parameter Weibull distribution parameter and a three-parameterWeibull distribution using a AG algorithm are both used in this distribution. This is supported by the small difference in the fitness value of the GA algorithm obtained compared to the PSO algorithm. The sample space also affects the difference in fitness. The large the sample space, the greater the fitness.

Copyrights © 2022






Journal Info

Abbrev

JMPM

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

FARABI; Jurnal Matematika dan Pendidikan Matematika (JMPM) menyediakan forum untuk menerbitkan artikel penelitian, artikel review, dan berita teknologi baru yang terkait dengan pendidikan matematika dan terapan. Jurnal ini disediakan untuk penulis, guru, mahasiswa, profesor, dan peneliti, yang akan ...