Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 6 No 9 (2022): September 2022

Analisis Sentimen IMDB Movie Reviews menggunakan Metode Long Short-Term Memory dan FastText

M. Aasya Aldin Islamy (Fakultas Ilmu Komputer, Universitas Brawijaya)
Indriati Indriati (Fakultas Ilmu Komputer, Universitas Brawijaya)
Putra Pandu Adikara (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
06 Sep 2022

Abstract

Current technological developments make it easier for humans to explore a lot of information using the internet such as review information or opinions about films. Public opinion about the film can be found on the IMDB website. By doing a sentiment analysis on public opinion about the film, we can conclude whether a film gets more positive or negative opinions. To perform this sentiment analysis, one of the deep learning methods is used, namely Long Short-Term Memory (LSTM) with FastText as a vector representation of words in the IMDB movie reviews dataset of 50,000 data. Performance using the Long Short-Term Memory and FastText methods produces an accuracy of 0.863; precision of 0.865; recalls of 0.861; and f1-score of 0.863. This LSTM and FastText method produces better performance than using LSTM alone with a difference of 0.053 on the f1-score value with details of accuracy reaching 0.808; precision reaches 0.804; recalls reached 0.816; f1-score reaches 0.810 for the LSTM method only.

Copyrights © 2022






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...