JUITA : Jurnal Informatika
JUITA Vol. 10 No. 2, November 2022

DDoS Attacks Detection Method Using Feature Importance and Support Vector Machine

Ahmad Sanmorino (Universitas Indo Global Mandiri)
Rendra Gustriansyah (Universitas Indo Global Mandiri)
Juhaini Alie (Universitas Indo Global Mandiri)



Article Info

Publish Date
14 Nov 2022

Abstract

In this study, the author wants to prove the combination of feature importance and support vector machine relevant to detecting distributed denial-of-service attacks. A distributed denial-of-service attack is a very dangerous type of attack because it causes enormous losses to the victim server. The study begins with determining network traffic features, followed by collecting datasets. The author uses 1000 randomly selected network traffic datasets for the purposes of feature selection and modeling. In the next stage, feature importance is used to select relevant features as modeling inputs based on support vector machine algorithms. The modeling results were evaluated using a confusion matrix table. Based on the evaluation using the confusion matrix, the score for the recall is 93 percent, precision is 95 percent, and accuracy is 92 percent. The author also compares the proposed method to several other methods. The comparison results show the performance of the proposed method is at a fairly good level in detecting distributed denial-of-service attacks. We realized this result was influenced by many factors, so further studies are needed in the future.

Copyrights © 2022






Journal Info

Abbrev

JUITA

Publisher

Subject

Computer Science & IT

Description

UITA: Jurnal Informatika is a science journal and informatics field application that presents articles on thoughts and research of the latest developments. JUITA is a journal peer reviewed and open access. JUITA is published by the Informatics Engineering Study Program, Universitas Muhammadiyah ...