Brahmana : Jurnal Penerapan Kecerdasan Buatan
Vol 4, No 2 (2023): Edisi Juni

Analisis Perbandingan Fungsi Aktivasi CNN Pada Pengelompokan Jenis Beras Berdasarkan Mutu Beras

Wathani, Muhammad Rais (Unknown)
Hidayati, Nur (Unknown)



Article Info

Publish Date
30 Jun 2023

Abstract

This article discusses the comparative analysis of activation functions in Convolutional Neural Network (CNN) for clustering rice types based on rice quality. Two activation functions tested are LogSoftmax and Softmax. Through data collection and CNN architecture implementation, we trained and evaluated the models using evaluation metrics such as accuracy, precision, recall, and F1 score. The results show significant differences in model performance based on the activation function used. These findings provide practical guidance for the food industry in selecting the optimal activation function for clustering rice types. The test results also indicate that the highest accuracy of 0.9787 or 97.87% was achieved with the LogSoftmax activation function architecture model, with the highest precision, recall, and F1 score. On the other hand, the Softmax activation function achieved an accuracy of 0.9286 or 92.86%.

Copyrights © 2023






Journal Info

Abbrev

brahmana

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Education Engineering

Description

BRAHMANA: Jurnal Penerapan Kecerdasan Buatan adalah sebuah jurnal peer-review secara online yang diterbitkan bertujuan sebagai sebuah forum penerbitan tingkat nasional di Indonesia bagi para peneliti, profesional, Mahasiswa dan praktisi dari berbagai bidang Ilmu Kecerdasan Buatan. BRAHMANA: Jurnal ...