International Journal of Enterprise Modelling
Vol. 17 No. 1 (2023): Jan: Enterprise Modelling

Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty

Sihotang, Hengki Tamando (Unknown)
Michaud, Patrisius (Unknown)
Teresa, Patrys (Unknown)



Article Info

Publish Date
01 Jan 2023

Abstract

Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty is a crucial research area that addresses the challenge of making optimal decisions in the presence of distributional ambiguity. This research explores the development of methodologies and algorithms to handle uncertainty in variational inequalities, incorporating a distributionally robust framework that considers a range of possible distributions or uncertainty sets. By minimizing the worst-case expected performance across these distributions, the proposed approaches ensure robustness and optimality in decision-making under uncertainty. The research encompasses theoretical analysis, algorithm development, and empirical evaluations to demonstrate the effectiveness of the proposed methodologies in various domains, such as portfolio optimization and supply chain management. The outcomes of this research contribute to the advancement of robust optimization techniques, enabling decision-makers to make reliable and robust decisions in complex real-world systems

Copyrights © 2023






Journal Info

Abbrev

ieia

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Economics, Econometrics & Finance Engineering Industrial & Manufacturing Engineering Library & Information Science Mathematics Transportation

Description

The International Journal of Enterprise Modelling serves as a venue for anyone interested in business and management modelling. It investigates the conceptual forerunners and theoretical underpinnings that lead to research modelling procedures that inform research and ...