Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI)
Vol. 13 No. 1 (2024)

Comparison of K-NN, SVM, and Random Forest Algorithm for Detecting Hoax on Indonesian Election 2024

Indra (Unknown)
Agus Umar Hamdani (Unknown)
Suci Setiawati (Unknown)
Zena Dwi Mentari (Unknown)
Mauridhy Hery Purnomo (Unknown)



Article Info

Publish Date
31 Mar 2024

Abstract

During the year 2022, The Indonesian National Police (POLRI) received 113 reports related to the spread of hoax news related to 2024 Indonesian Election (PEMILU). There are still relatively few hoax detection tools that already exist in Indonesia. This research creates a system that can detect hoax news in Indonesian tweets about the Indonesian Election (PEMILU) 2024 by comparing three methods, namely K-NN, SVM, and Random Forest. The process of labeling (create model) using validation on ground truth data, namely cekfakta.tempo, cekfakta.kompas, and turnbackhoax.id. In this research, we also check the differences between different types of distance measurements in applying the K-NN algorithm. The method used for feature extraction in this research is TF-IDF. The results of experiments show that the highest accuracy results are obtained using the SVM and K-NN algorithms with distance measurements using Euclidean Distance, which is 86.36%. The best precision value is obtained using the K-NN algorithm with distance measurements using Manhattan Distance, which is 86.95%.

Copyrights © 2024






Journal Info

Abbrev

janapati

Publisher

Subject

Computer Science & IT Education Engineering

Description

Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) is a collection of scientific articles in the field of Informatics / ICT Education widely and the field of Information Technology, published and managed by Jurusan Pendidikan Teknik Informatika, Fakultas Teknik dan Kejuruan, Universitas ...