JOINCS (Journal of Informatics, Network, and Computer Science)
Vol. 6 No. 2 (2023): November

Sarcasm Detection in News Headline Dataset with Ensemble Deep Learning Method: Deteksi Sarkasme Pada Dataset News Headline Dengan Metode Ensemble Deep Learning

Mochamad Alfan Rosid (Unknown)
Siti Nur Haliza (Unknown)
Yulian Findawati (Unknown)
Uce Indahyanti (Unknown)



Article Info

Publish Date
30 Nov 2023

Abstract

Sarcasm, a prevalent linguistic device, is frequently used in public discourse, often causing offence and distress to the listener. The complexity inherent in detecting sarcasm is a significant and ongoing challenge in the field of sentiment analysis research. The widespread use of this phenomenon in diverse conversational contexts further complicates its identification in data sets full of human interactions. Deficiencies in methodologies for distinguishing such statements adversely affect the performance of sentiment analysis, especially in distinguishing negative, positive or neutral sentiments. Inaccuracies in sarcasm detection can affect the classification results of sentiment analysis. Therefore, sentiment analysis seeks to categorise sarcastic sentences that, despite appearing positive, actually contain negative meanings. This research aims to build a deep learning ensemble stack model. The basic deep learning methods used are Bidirectional Gated Recurrent Unit (BiGRU) and Convolutional Neural Network (CNN). LightGBM is used to perform stack ensemble of deep learning methods. The dataset used comes from the Kaggle website and consists of English headlines. The findings show that the stack ensemble method outperforms BiGRU and CNN, evidenced by an accuracy rate of 91.2% and an F1 score of 90.2%. Therefore, from the above discussion, it can be concluded that the LightGBM method emerges as the optimal solution for sarcasm detection

Copyrights © 2023






Journal Info

Abbrev

joincs

Publisher

Subject

Computer Science & IT

Description

JOINCS publishes original research papers in computer science and related subjects in system science, with consideration to the relevant mathematical theory. Applications or technical reports oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the ...