JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING
Vol. 4 No. 1 (2020): ---> EDISI JULI

Attribute Selection in Naive Bayes Algorithm Using Genetic Algorithms and Bagging for Prediction of Liver Disease

Utami, Dwi Yuni (Unknown)
Nurlelah, Elah (Unknown)
Hikmah, Noer (Unknown)



Article Info

Publish Date
20 Jul 2020

Abstract

Liver disease is an inflammatory disease of the liver and can cause the liver to be unable to function as usual and even cause death. According to WHO (World Health Organization) data, almost 1.2 million people per year, especially in Southeast Asia and Africa, have died from liver disease. The problem that usually occurs is the difficulty of recognizing liver disease early on, even when the disease has spread. This study aims to compare and evaluate Naive Bayes algorithm as a selected algorithm and Naive Bayes algorithm based on Genetic Algorithm (GA) and Bagging to find out which algorithm has a higher accuracy in predicting liver disease by processing a dataset taken from the UCI Machine Learning Repository database (GA). University of California Invene). From the results of testing by evaluating both the confusion matrix and the ROC curve, it was proven that the testing carried out by the Naive Bayes Optimization algorithm using Algortima Genetics and Bagging has a higher accuracy value than only using the Naive Bayes algorithm. The accuracy value for the Naive Bayes algorithm model is 66.66% and the accuracy value for the Naive Bayes model with attribute selection using Genetic Algorithms and Bagging is 72.02%. Based on this value, the difference in accuracy is 5.36%.Keywords: Liver Disease, Naïve Bayes, Genetic Agorithms, Bagging.

Copyrights © 2020






Journal Info

Abbrev

jite

Publisher

Subject

Computer Science & IT Engineering

Description

JURNAL TEKNIK INFORMATIKA, JITE (Journal of Informatics and Telecommunication Engineering) is a journal that contains articles / publications and research results of scientific work related to the field of science of Informatics Engineering such as Software Engineering, Database, Data Mining, ...