Active Contour (AC) merupakan algoritme yang banyak digunakan dalam melakukan segmentasi dalam mengembangkan sistem Computer Aided Diagnosis (CAD) pada pencitraan USG. Namun metode yang berkembang masih bersifat interaktif yang menyebabkan human error serta adanya berbagai masalah akibat inhomogenitas pada citra Ultrasonografi (USG) seperti leakage, terjadinya false area serta local minima. Pada studi ini dikembangkan metode segmentasi objek otomatis pada citra USG untuk membantu radiolog dalam proses diagnosis yang efisien. Metode yang dikembangkan disebut Automatic Combinatorial Active Contour (ACAC) yang mengkombinasikan turunan simplifikasi model global region-based CV (Chan-Vese) dan improved-GAC (Geodesic Active Contour) untuk segmentasi lokal. Hasil studi dengan 50 dataset yang diuji coba yaitu didapatkannya nilai accuracy sebesar 98.83%, precission 95.26%, sensitivity 86.58%, specificity 99.63%, similarity 90.58%, dan IoU 82.87%. performa kuantitatif ini membuktikan bahwa metode ACAC layak diimplementasikan pada sistem CAD yang lebih efisien dan akurat.
                        
                        
                        
                        
                            
                                Copyrights © 2023